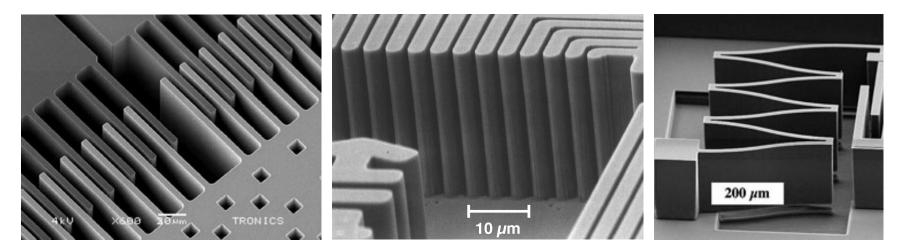
High Aspect Ratio Si Etching in STS2


Jaewoong Jeong Mentor: Jim McVittie and Mary Tang

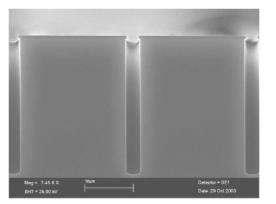
EE412 Stanford University

December 8, 2010

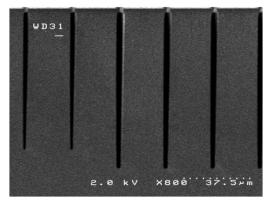
Motivation

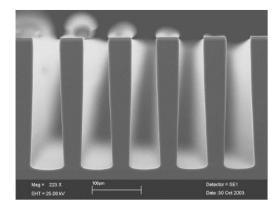
- Applications of DRIE:
 - MEMS (accelerometers, micromotors, etc)
 - Optical MEMS (scanners, optical switches, etc)
 - Microfluidic channels and ports
 - Electrical through wafer interconnects
- High aspect ratio etching for design flexibility and high device performance

Overview



- Background for STS2 process
- Recipes for different purposes:
 - HAR recipe
 - Low frequency bias recipe for SOI wafer process
 - Low power recipe for low temperature process


Background


Deep Reactive Ion Etch (DRIE) Profile

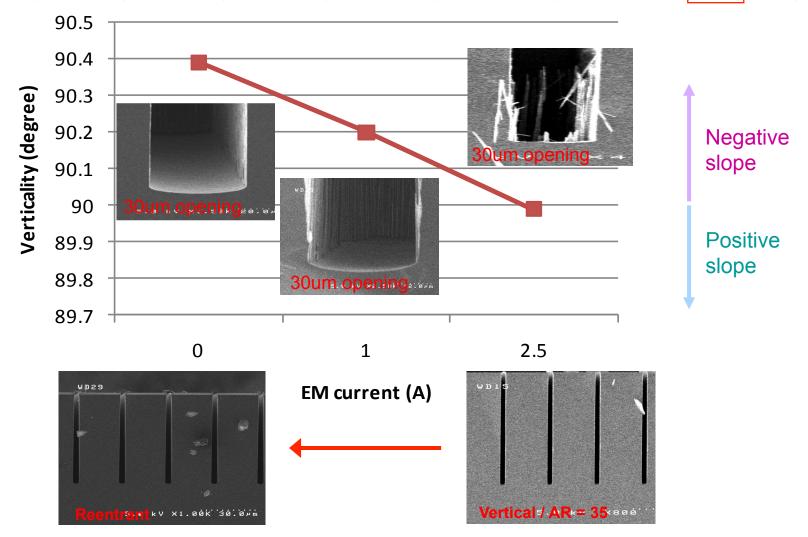
Vertical profile

Positive slope (V-shaping)

Negative slope (Reentrant)

Summary of STS2 process trends

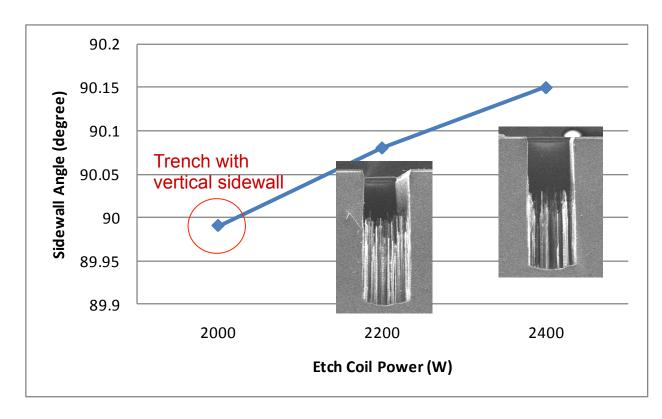
Trends for Controlling	Etch	Profile	Selectivity	Grass	Breakdown	Sidewall
process results	rate	(↑ negative)				Roughness
		(↓ positive)				
Etch gas increase	$\uparrow\uparrow$	$\uparrow\uparrow$	↑ (\downarrow	ŕ	\uparrow
Dep gas increase	\downarrow	\leftrightarrow	↑	\uparrow	$\downarrow \downarrow$	\downarrow
Etch:Dep time ratio	ŕ	\uparrow	$\uparrow \leftrightarrow$	\rightarrow	$\uparrow \leftrightarrow$	1
increase						
Pressure increase	$\uparrow\uparrow$	Ϋ́.	ŕ	$\downarrow \leftrightarrow$	\leftarrow	\uparrow
Dep Coil Power increase	$\rightarrow \rightarrow$	$\downarrow \leftrightarrow$	$\uparrow \leftrightarrow$	Ϋ́	$\downarrow \leftrightarrow$	\rightarrow
Etch Coil Power increase	ŕ	\uparrow	↑ (\rightarrow	ŕ	\uparrow
Platen Power increase	$\uparrow \leftrightarrow$	$\uparrow \leftrightarrow$	\rightarrow	\rightarrow	\leftrightarrow	\leftrightarrow
EM1 value (e) increase	$\downarrow \leftrightarrow$	$\downarrow \leftrightarrow$	\uparrow	$\uparrow \leftrightarrow$	$\downarrow \leftrightarrow$	\leftrightarrow
EM1 delay (e) increase	$\uparrow \leftrightarrow$	$\uparrow \leftrightarrow$	\rightarrow	$\downarrow \leftrightarrow$	$\uparrow \leftrightarrow$	\leftrightarrow


HAR (High Aspect Ratio) Recipe

HAR – Influence of EM Current

HAR Recipe – tried different EM current

SF6/O2 Flow (sccm)	C4F8 Flow (sccm)	Etch Cycle Time (s)	Dep. Cycle Time (s)	Pressure (pass/etch)	Coil Power (pass/etch)	Platen Power (pass/etch)	EM/Delay	Temp
200/20	200	3.5	3	12%/26%	1200W/2000W	0W/85W HF	2.5A/2s	10C
200/20	200	3.5	3	12%/26%	1200W/2000W	0W/85W HF	1A/2s	10C
200/20	200	3.5	3	12%/26%	1200W/2000W	0W/85W HF	0A/0s	10C

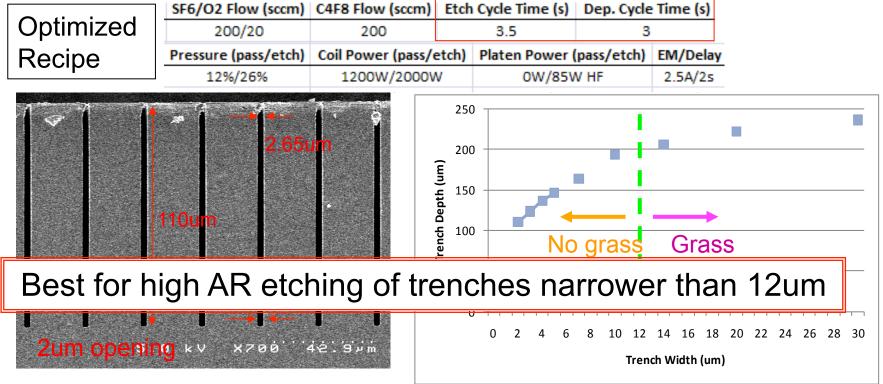


HAR – Influence of Coil Power

- Enhanced coil power increases etch rate
- Increased coil power \rightarrow bottle-shaped profile / reduced grass

SF6/O2 Flow (sccm)	C4F8 Flow (sccm)	Etch Cycle Time (s)	Dep. Cycle Time (s)	Pressure (pass/etch)	Coil Power (pass/etch)	Platen Power (pass/etch)	EM/Delay	Temp
200/20	200	3.5	3	12%/26%	1200W/2200W	0W/85W HF	2.5A/2s	10C
200/20	200	3.5	3	12%/26%	1200W/2400W	0W/85W HF	2.5A/2s	10C

HAR – Influence of Temperature


02 Flow (sccm) C 200/20	200	3.5	3	12%/26%	1200W/2000W	0W/85W HF	2.5A/2s		
		10°C				20°C			
 Grass s wide tren 	•	opear fron	n 12~14 un	n- ■ Gra trencł	ss starts to ap า	opear from 4	um-wide		
 Sidewall angle ~ 90° 					 Sidewall angle ~ 90.2° 				
		WD29.			wD29		н. Р		

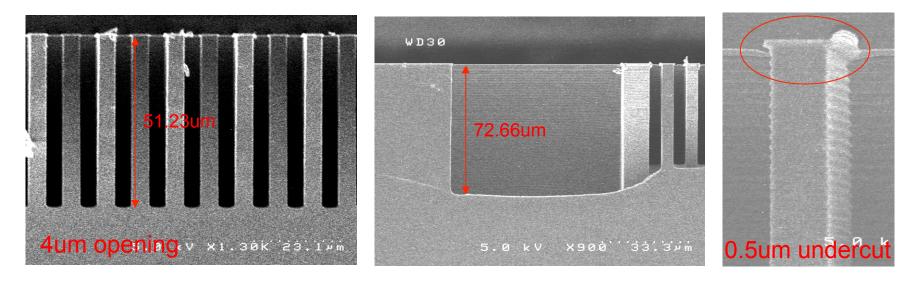
um opening_{kv x1.10}k 27.3 m

um opening, x1.10k 27:3

Optimized HAR for Vertical Sidewalls

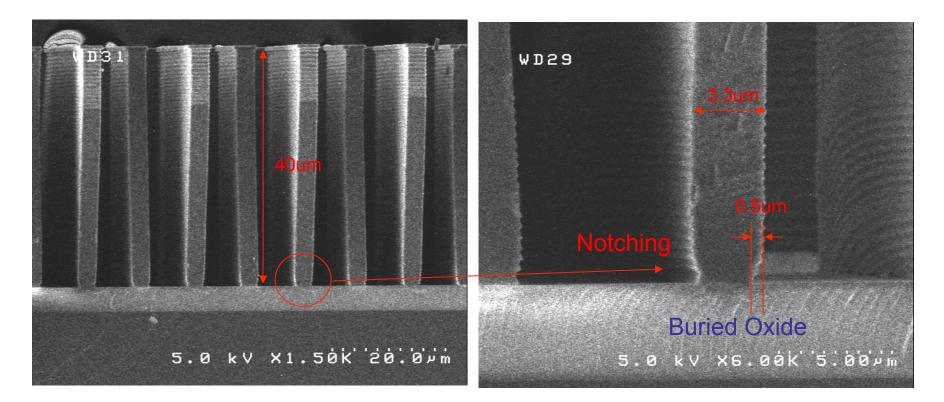
From three samples after 550 cycles,

- Average AR = 41.71 (Goal achieved!)
- Standard Deviation of AR = 0.28
- Verticality = 89.99°
- Undercut ~ 350nm
- Sidewall roughness ~ 150nm


Low Frequency Bias Recipe

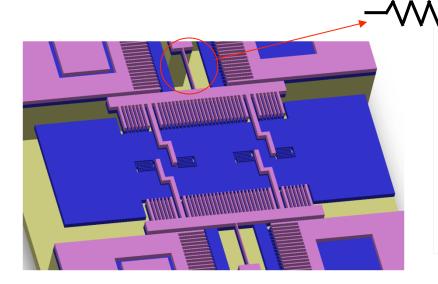
Low Frequency Bias Recipe

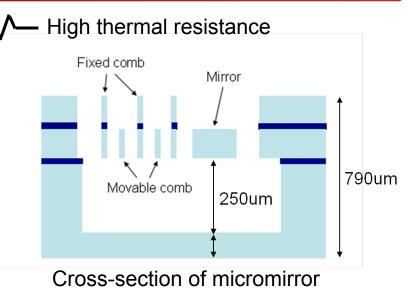
LF bias recipe for SOI use


SF6/O2 Flow (sccm)	C4F8 Flow (sccm)	Etch Cycle Time (s)	Dep. Cycle Time (s)	Pressure (pass/etch)	Coil Power (pass/etch)	Platen Power (pass/etch)	EM/Delay	Temp
450/45	100	3	2	15%/15%	1000W/2400W	0W/45W	0A/0s	10C

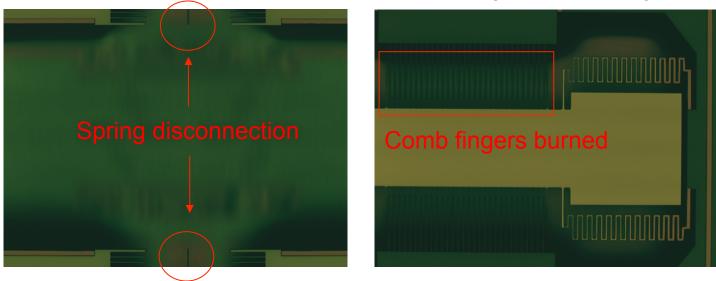
- Etch rate = 6um/min for 4um-gap trench
- Selectivity Si:Ox = ~420:1
- Sidewall angle = 89.97° for 4um gap trench
- No grass found in 1.8mm X 1.8mm trench with 300um depth

Notching characteristics


0.5um notching by 20% overetching



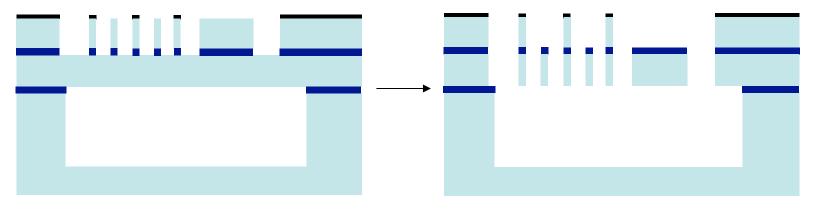
Low Power Recipe


Motivation toward Low Power Recipe

Structure disconnections due to Si burn during STS2 etching

Low Power Recipe

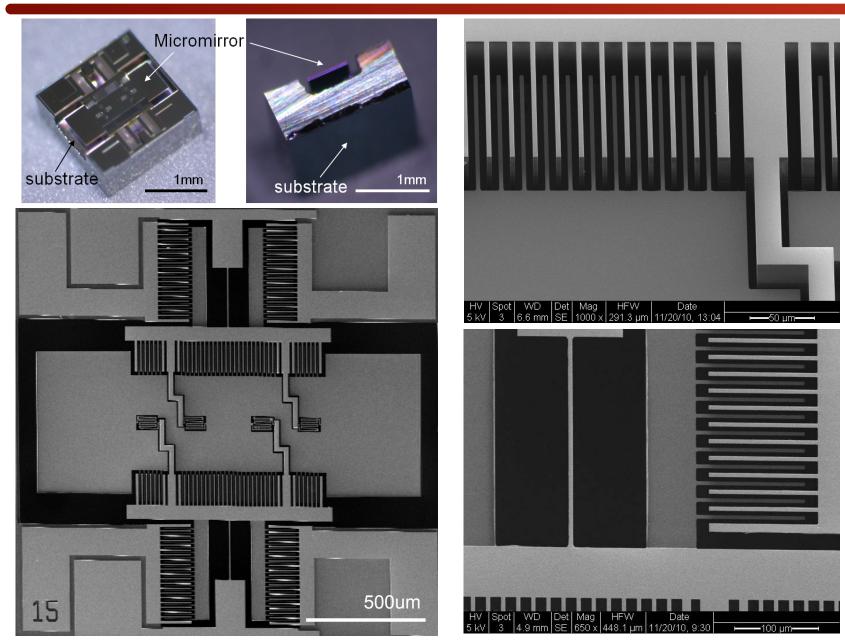
Low power recipe for reduced heating during etching


SF6/O2 Flow (sccm) C4F8 Flow	sccm) Etch Cycle Time (s) Dep. Cycle Time (s)	Pressure (pass/etch)	Coil Power (pass/etch)	Platen Power (pass/etch)	EM/Delay	Temp
450/45 100	3	2	15%/15%	1000W/1500W	0W/45W	0A/0s	10C
	41.08um	4.97um 4.58um		¥D31 5.0	kv x4.5ġk' ć.ć∀√m		
	5.0	kV X1.30	ak''23.14	1 5.e	kV X4.50k 6.67₽m		

- Etch rate = 4.89um/min for 4um-gap trench
- Selectivity Si:Ox = ~580:1
- Sidewall angle = 89.93° for 4um gap trench

Low power DRIE

Two step etching to solve the heating problem


1. Top device layer etching: Coil power = 2400W in LF bias recipe

2. Bottom device layer etching Three step etching in Coil power = 1500W

 $\mathsf{Etch} \to \mathsf{Cool} \to \mathsf{Etch} \to \mathsf{Cool} \to \mathsf{Etch}$

Image of fabricated MEMS scanner

Conclusion

- High aspect ratio recipe has been developed
 - HAR
 - AR of 41 for 2um-gap trench
 - No grass for trench narrower than 12um
 - Low frequency bias recipe for processing SOI wafers
 - Low power recipe to minimize the heating problems in STS2
 - Good for etching Membrane structures

Thank You!