SiNWs Thermoelectric Device Process Development

ENGR 241 AUTUMN 2019
FINAL PRESENTATION

Rui Ning, Yue Jiang, Jihyun Baek

Mentors: Mark Zdeblick, Donald Gardner, Daihong Huh, Usha Raghuram

Contents

- Background and Objectives
- Method
- Results and Discussions
- ◆ Future Plan
- Budget

Objectives and Background

Goal

- To develop porous Silicon nanowires (SiNWs) thermoelectric (TE) devices with high ZT and optimal amount of porosity using metal assist chemical etching (MACE) or metal assisted anodic etching (MAAE) method
- To develop sub-micron nanoimprint lithography (NIL) and photo lithography (PL) patterning SOPs for SNF.
- TE figure of merit: $ZT = \frac{\sigma S^2 T}{k}$ (vapor-compression cycle refrigerator ZT ~ 3.0)
 - Density of carriers↓, S↑, k dominated by phonons, decoupled σ and k

SiNWs Thermoelectric device:

100-fold ZT over bulk Si

Nanowire advantages:

- Quantum confinement: size ~ electron & phonon wavelength → S²σ↑
- Boundary scattering: e mean free path < size(~300nm) < phonon mean free path → k↓

Kayes, B.M., et. al., PVSC '08. 33rd IEEE, 2008

Hochbaum, A. I., et. al., Nature 2008, 451, 163-168

Process Overview

Method (Nanoimprint Lithography)

Circle Pattern Diameter: < 300 nm

Method (Nanoimprint Lithography)

Method (Photolithography)

Results

SEM images of the NIL patterned metal layer (a) before and (b) after lift-off.

SEM images of the PL patterned metal layer with (a) 1.2 µm and (b) 1.5 µm square mask dimensions after lift-off.

- Pattern: achieved sub micron features using both patterning methods
 - NIL: achieved ~ 150-200 nm pattern by NIL and RIE process.
 - PL: achieved ~ 650 nm pattern by 1.2 μm square mask dimension; achieve ~ 1.2 μm pattern by 1.5 μm square mask dimension.

Results

SEM images of SiNWs fabricated by NIL patterned p type wafer with (a) 1 hr MACE, (b) 20 hr MACE; NIL patterned p++ type wafer with (c) 1 hr MACE, (d) 5 hr MACE; (e)1.2 um, (f) 1.6 um square array PL patterned p type wafer with 1.5 hr MACE.

- MACE: 4.8M HF + 0.3M H₂O₂
 - NIL: fabricated SiNWs using p (5-10 Ωcm) type and p++ (0.005 Ωcm) type of Silicon wafers.
 - PL: fabricated SiNWs using p type Silicon wafer.

Discussions

 Array of SiNWs with high aspect ratio (> 900) was fabricated using NIL, RIE and MACE.

Findings:

- Effective NIL+RIE and PL SOPs were developed to pattern uniform lift-off layer on p, and p++ Si wafers.
- Optimal etching conditions for MACE of p and p++ Si wafers were found. Etch rates under these conditions were obtained.

Future Plan (Winter quarter)

- Refine MACE and explore MAAE process for better controllability of SiNWs fabrication.
- Boron post doping of the fabricated SiNWs.
- Create top ohmic metal contact of the SiNWs array.
- Thermoelectric performance measurement.

Budget

Budget			
Detailed Cost (\$)	Training	Equipment Usage	Materials
	1060	3025.34	333.2
Overall Cost (\$)	4418.54		
Proposed Budget (\$)	4985		
Remaining (\$)	566.46		