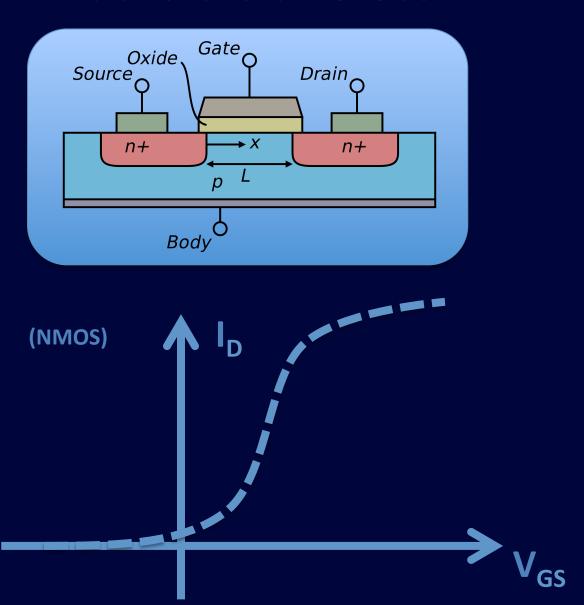
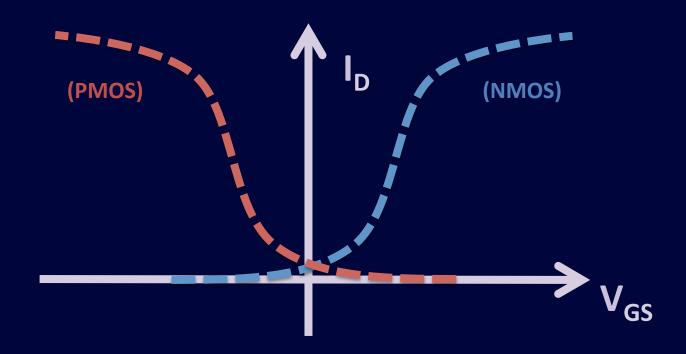
A quick turnaround device process EE410 redesign

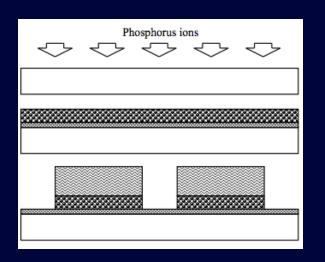

Max Shulaker, Rebecca Park

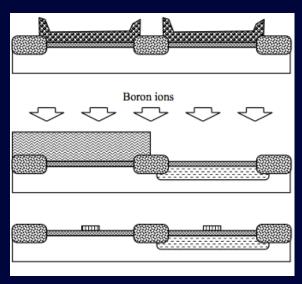
Prof. Roger Howe, Usha Raghuram

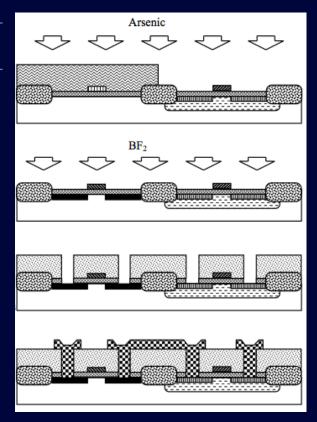

Key Points

- Target yield: >99.9999%
- Clean + Gold Contaminated Process Flows
- Total flow time: <5 days</p>
- Depletion mode logic (NMOS)
- SNF Standard Cell Library
 - Digital logic cells (inv, nand2, nor2, etc.)
 - Simple analog amplifiers

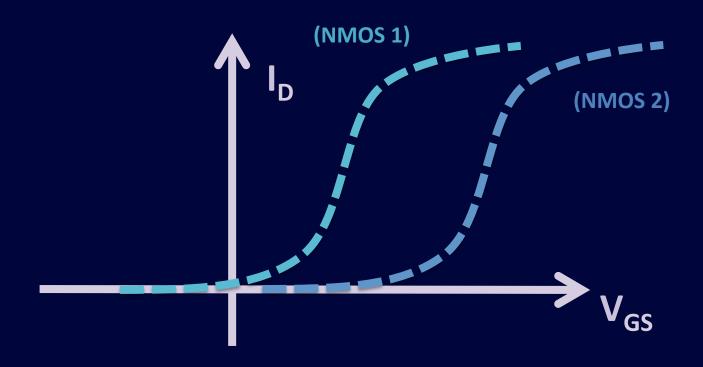
What is a transistor?




For CMOS processing, we need both



CMOS-LOCOS (EE410)


Process	CMOS-LOCOS
Implantation	4
Photolithography Layers	7
Deposition	4
Furnace (Oxidation + Anneal)	4
Contact Hole Etch	1

Or, we can do something like...

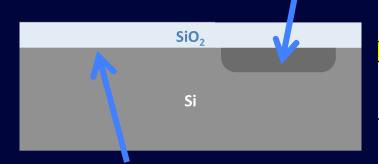
NMOS-Depletion (new EE410)

Process	CMOS-LOCOS	NMOS-Depletion
Implantation	4	3
Photolithography Layers	7	5
Deposition	4	1
Furnace (Oxidation + Anneal)	4	1
Contact Hole Etch	1	1

Main advantage of NMOS-Depletion mode:

Due to the *simplified* silicon process, EE410 students gain *hands-on* fabrication experience.

NMOS-Depletion Process Flow


Thermal Oxidation

SiO ₂
c:
Si

	Equipment	Purpose	Processing Details	
1	wbnonmetal		i. Piranha (9:1 H2SO4:H2O2) 120°C for 20 minutes ii. Water dump rinser iii. 50:1 HF dip for 30 seconds iv. Water dump rinser v. SRD	
2	wbclean	wafer cleaning	 i. RCA clean (bath 1) 50°C for 10 minutes ii. Water dump rinser iii. 50:1 HF dip for 30 seconds iv. Water dump rinser v. RCA clean (bath 1) 50°C for 10 minutes vi. Water dump rinser vii. 50:1 HF dip for 30 seconds viii. Water dump rinser ix. SRD 	
3	Thermco1	thermal oxidation	900°C, $2 hr: 40 min: 00 sec$, $dry oxidation$ Oxide thickness target $\sim 30 nm$ (If oxide is too thick, etch bath in $50:1 HF$ in wbclean. Etch rate is $\sim 4 nm/min$.)	
	Check oxide thickness using Nanospec or Woollam.			

High V_T well implant

Transistor 2 with **higher** V_T

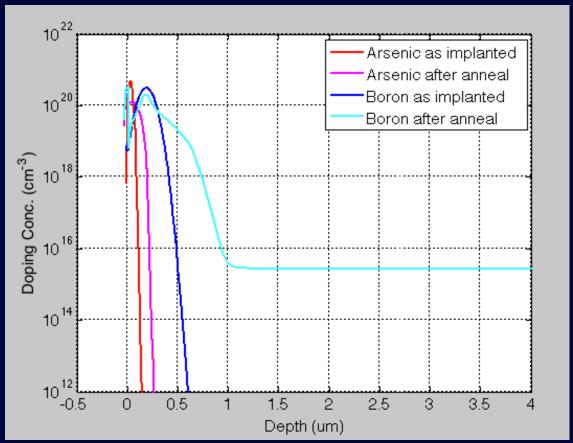
Transistor1 with **lower** V_T

	Equipment	Purpose	Processing Details
1	YES Oven	prime wafers	
2	SVG Resist Coat	coat photoresist	Program 7 - PR 3612 1um w/o VP backside EBR only
3	ASML	expose	*wafers must be cleaned in SRD to minimize particle contamination in ASML Mask: Jobfile: Exposure dose: 50
4	SVG Developer	bake and develop	(Initial bake) Developer 9 / Hot plate 1 (Develop + post bake) Developer 3 / Hot plate 1
	C	heck developed region un	der microscope.
5	Oven 110°C	harden the resist so that it withstands the implantation	Bake for 30 minutes
6	Drytek2	descum (to remove residual photoresist before implantation)	*season chamber for 10 minutes *make sure to use clean slots Program 1 - pressure 150mTorr, oxygen flow 100sccm, power 250W (~0W reflected) for 40 seconds
7	Send out for Implantation	High V _T well implant	*The implantation is done outside of SNF Boron 1e13 cm ⁻² , 60 keV, 7° tilt
8	gasonics	remove photoresist	Program 016
9	wbnonmetal	wafer cleaning	i. Piranha (9:1 H2SO4:H2O2) 120°C for 20 minutes ii. Water dump rinser iii. SRD

Isolation P+ implant

SiO₂

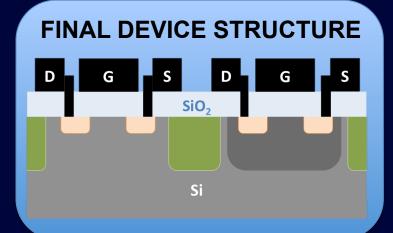
	Equipment	Purpose	Processing Details
1	YES Oven	prime wafers	
2	SVG Resist Coat	coat photoresist	Program 7 - PR 3612 1um w/o VP backside EBR only
3	ASML	expose	*wafers must be cleaned in SRD to minimize particle contamination in ASML Mask: Jobfile: Exposure dose: 50
4	SVG Developer	bake and develop	(Initial bake) Developer 9 / Hot plate 1 (Develop + post bake) Developer 3 / Hot plate 1
	C	Check developed region un	der microscope.
5	Oven 110°C	harden the resist	Hard bake for 30 minutes
6	Drytek2	descum	*season chamber for 10 minutes *make sure to use clean slots Program 1 - pressure 150mTorr, oxygen flow 100sccm, power 250W (~0W reflected) for 40 seconds
7	Send out for Implantation	Isolation P+ implant	*The implantation is done outside of SNF Boron 5e15 cm ⁻² , 60 keV, 7° tilt
8	gasonics	remove photoresist	Program 017
9	wbnonmetal	wafer cleaning	i. Piranha (9:1 H2SO4:H2O2) 120°C for 20 minutes ii. Water dump rinser iii. SRD
8	gasonics	remove photoresist	*Reason for performing a more thorough clean: It is difficult to clean the photoresist after implanting boron with high dose of 5e15 cm ⁻² . Therefore, we make sure by running the clean in gasonics once more. Program 013


S/D N+ implant

SiO₂

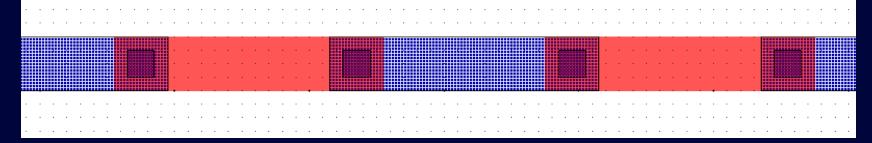
			1
	Equipment	Purpose	Processing Details
1	YES Oven	prime wafers	
2	SVG Resist Coat	coat photoresist	Program 7 - PR 3612 1um w/o VP backside EBR only
3	ASML	expose	*wafers must be cleaned in SRD to minimize particle contamination in ASML Mask: Jobfile: Exposure dose: 50
4	SVG Developer	bake and develop	(Initial bake) Developer 9 / Hot plate 1 (Develop + post bake) Developer 3 / Hot plate 1
	C	<mark>Check developed region un</mark>	der microscope.
5	Oven 110°C	harden the resist	Hard bake for 30 minutes
6	Drytek2	descum	*season chamber for 10 minutes *make sure to use clean slots Program 1 - pressure 150mTorr, oxygen flow 100sccm, power 250W (~0W reflected) for 40 seconds
7	Send out for Implantation	Source/Drain implant	*The implantation is done outside of SNF Arsenic 2e15 cm ⁻² , 60 keV, 7° tilt
8	gasonics	remove photoresist	Program 017
9	wbnonmetal	wafer cleaning	i. Piranha (9:1 H2SO4:H2O2) 120°C for 20 minutes ii. Water dump rinser iii. SRD
10	gasonics	remove photoresist	*Reason for performing a more thorough clean: It is difficult to clean the photoresist after implanting boron with high dose of 5e15 cm ⁻² . Therefore, we make sure by running the clean in gasonics once more. Program 013

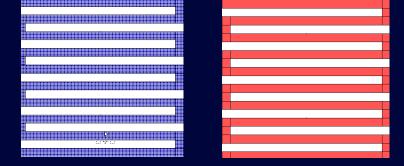
Anneal


	Equipment	Purpose	Processing Details
1	RTA-L	drive-in & oxide heal	Anneal 15 seconds, 1050°C 10 Argon flow + 1 Oxygen flow

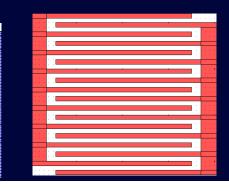
Etch Contact Hole

	Equipment	Purpose	Processing Details	
1	YES Oven	prime wafers		
2	SVG Resist Coat	coat photoresist	Program 7 - PR 3612 1um w/o VP 2mm EBR	
3	ASML	expose	*wafers must be cleaned in SRD to minimize particle contamination in ASML Mask: Jobfile: Exposure dose: 50	
4	SVG Developer	bake and develop	(Initial bake) Developer 9 / Hot plate 1 (Develop + post bake) Developer 3 / Hot plate 1	
	C	Check developed region un		
6	Drytek2	descum	*season chamber for 10 minutes *make sure to use clean slots Program 1 - pressure 150mTorr, oxygen flow 100sccm, power 250W (~0W reflected) for 40 seconds	
8	P5000	etch contact holes	*make sure the conditions are correct. People make changes to the recipes. Program surromed, 160 seconds, chamber B	
9	wbnonmetal	wafer cleaning	 i. Piranha (9:1 H2SO4:H2O2) 120°C for 20 minutes ii. Water dump rinser iii. 50:1 HF dip for 20 seconds iv. Water dump rinser v. SRD 	
	Check etched region under microscope.			

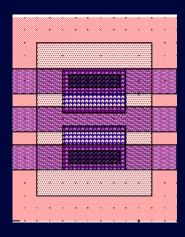

Metal Deposition


	Equipment	Purpose	Processing Details	
1	Headway2	coat LOL2000	*use a filter to make sure the LOL2000 spun on the wafers is clean. Also, remove any large particles on the wafers using nitrogen blowgun.	
2	"White" oven	bake LOL2000	*This is a critical step, as the temperature determines the amount of undercut. *"White" oven is actually green. Load at 125°C, and after closing the door, set the temperature to 195°C. The total time the wafer is in the oven should be timed 23 minutes.	
3	SVG Resist Coat	coat photoresist	Program 7 - PR 3612 1um w/o VP 2mm EBR	
4	ASML	expose	*wafers must be cleaned in SRD to minimize particle contamination in ASML Mask: Jobfile: Exposure dose: 50	
5	SVG Developer	bake and develop	(Initial bake) Developer 9 / Hot plate 1 (Develop + post bake) Developer 5 / Hot plate 1 - Change program 5 steps 4 and 7 from 22 seconds to 21 seconds. (Don't forget to change it back!)	
	C	heck developed region un		
6	Drytek2	descum	*season chamber for 10 minutes Program 1 - pressure 150mTorr, oxygen flow 100sccm, power 250W (~0W reflected) for 40 seconds	
7	Innotec	metal deposition	*right before loading wafers in Innotec, immerse the wafers in 50:1 HF dip for 30 seconds, followed by water bath, then hand-dry with nitrogen blowgun. This is to remove any oxide that was formed from the oxygen plasma (Drytek2). 5 nm Titanium and 40 nm Platinum	
8	wbsolvent	lift-off	 i. Acetone: 5 minutes (with sonication) ii. Remover PG: 20 minutes iii. IPA: 5 minutes iv. Blowdry with nitrogen gun 	
Check metal lift-off under microscope.				
9	RTA-R	anneal defects	Anneal 10 minutes, 350°C, 10 forming gas flow	
	Measure!			

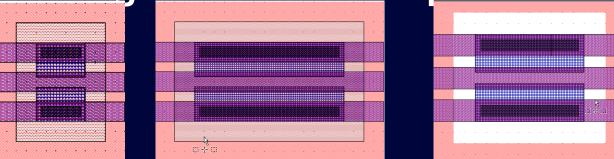
Test Structures


Contact chains (M1-M2)

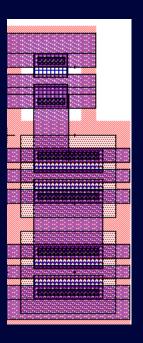
Continuity Structures

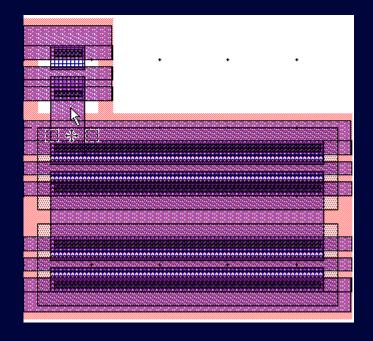


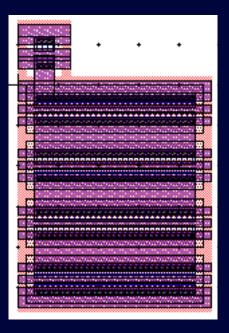
Isolation Structures


Transistor Sweep

Transistor standard cell

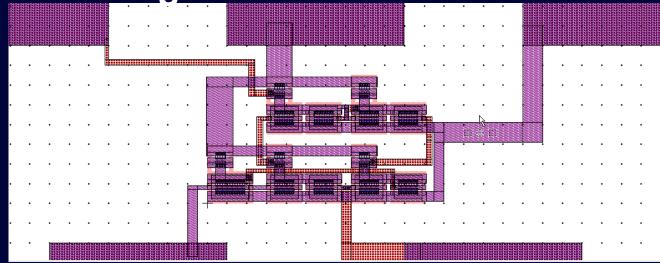

Sweep sizing + doping

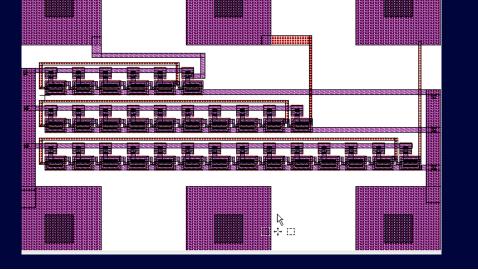

high + low Vt for depletion mode logic



Logic

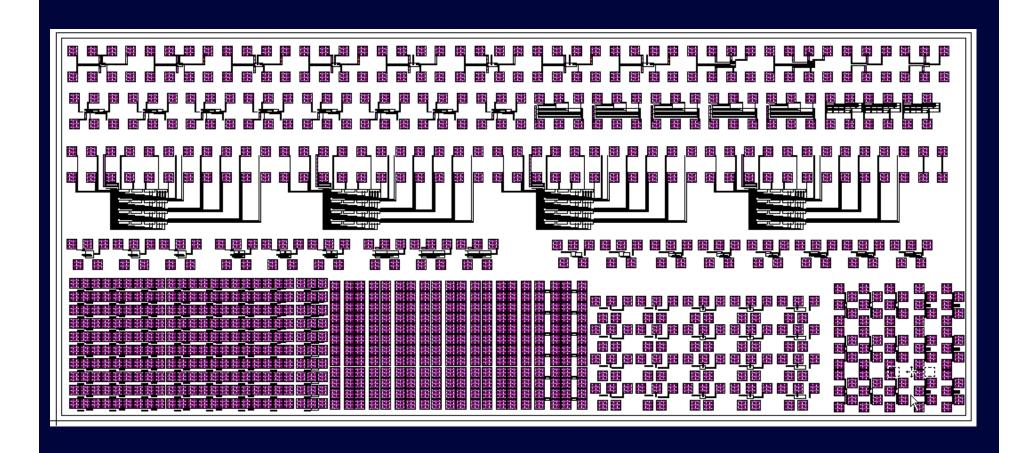
- Inverters, NANDs, NORs, etc.
 - Sweep sizing + fanin

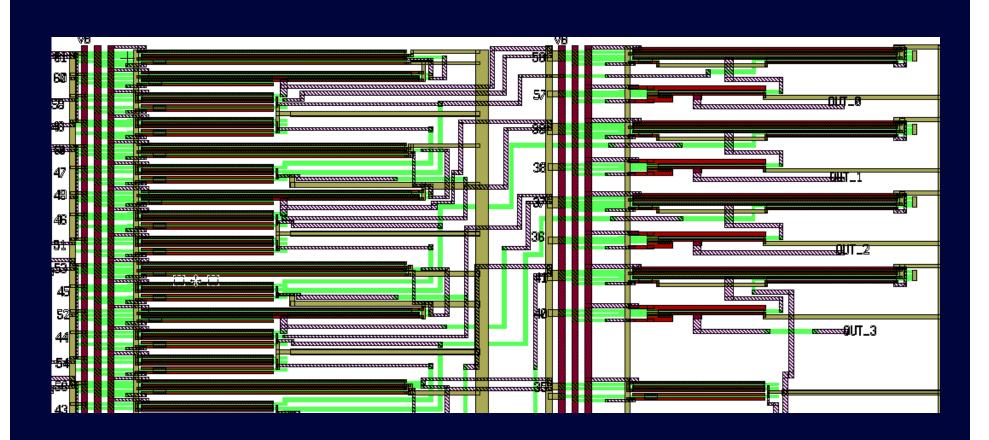


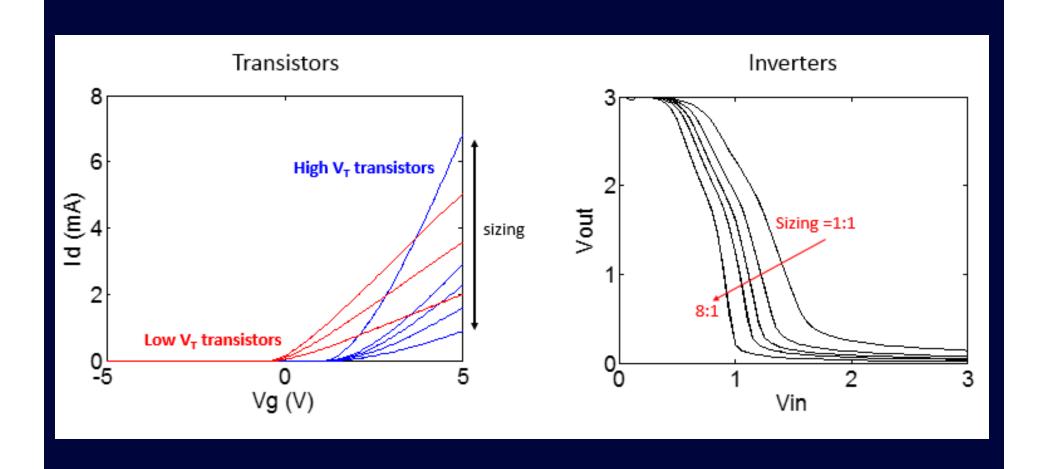


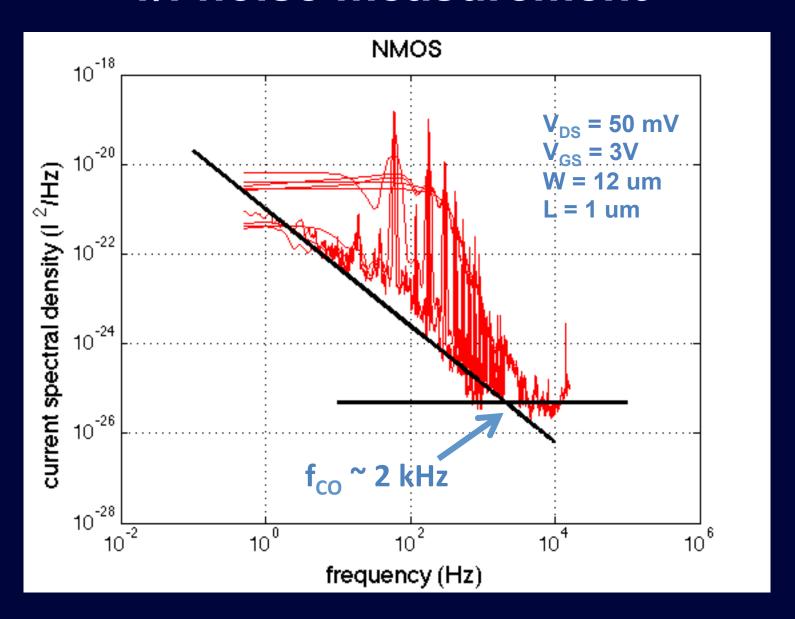
Complex Logic

Sequential logic: dlatch


• Ring oscillators (5, 7, 9, 13, etc. stages)


Decoder


Full Layout


Example Standard Cell Design

Sample Experimental Results

1/f noise measurement

1/f noise measurement

$$f_{co} = \frac{K_f}{4kT\gamma} \frac{1}{C_{ox}} \frac{g_m}{W \cdot L}$$

$$\rightarrow$$
 K_f ~ 0.365×10⁻²⁵ V²F

$$f_{CO} \sim 2 \text{ kHz}$$
 $g_m \sim 8.7087e\text{-}06 \text{ S}$
 $T \sim 300 \text{ K}$
 $k \sim 1.38e\text{-}23 \text{ J/K}$
 $C_{ox} \sim 0.0012 \text{ F/m}^2$
 $Y \sim 2/3$
 $W \sim 12 \text{ um}$
 $L \sim 1 \text{ um}$