## How to Calibrate the Beam Splitter on a Finetech System



Note: Verify all mating surfaces
are clean before using

Note: Theta alignment and then $\mathrm{X} / \mathrm{Y}$ axis

Note: Look for stable top/bottom die

## The Components

## Scale A <br> 11 lines, $19 \mu \mathrm{~m}$ pitch

Pick-up Tool


## Load the verniers

$>$ Clean A, B, and tool in IPA
$>$ Place larger scale (A) on vacuum plate (pattern UP)
> Small scale on the tool (B), (pattern OUT)


## Focus Adjustments

> Focus scale B<br>(use small<br>knurled knob on<br>left side of machine)



- Focus scale A (use z-height table adjustment)


## Place the verniers

$>$ Align the outer lines of scales in both $x$ and $y$ axes.
$>$ Ensure that line \#6 of $A$ is between lines $10 \& 11$ of $B$. If not repeat
> When finished, only outside lines of both scales should directly overlap (they are same distance
 apart $200 \mu \mathrm{~m}$ )
> Lower arm - place $A$ on $B$
> Be careful of vacuum procedure - don't release head vacuum until well positioned


## (Almost) Perfect Alignment


\#1A aligned to \#1B
\#11 A aligned to \#20B
.. all others misaligned

## View Results

$>\quad$ Refocus optics by changing z-height (focus on lines) Decide which A-line, overlaps which B-line
$>\quad$ Is $A$ up or down relative to $B$ ?
$>\quad$ By how many microns - see next 2 slides


## Error in Y-Axis



## Error in X-Axis



Adjustment Procedure
(typical values only)

$>$ Switch OFF pickup tool vacuum before pickup
$>$ Touchdown tool onto scale A- switch ON vacuum.
$\Rightarrow$ Raise arm with scale A
$>$ Check alignment is as before - perfectly aligned ?
$>$ If not repeat procedure and make new measurement

## X-Axis Correction



## The screw is sensitive !!!!!

- Look through microscope - scales should be aligned
- Turn screw in a direction that moves scale A in the direction of the error (green arrow)
- Stop when the scales read an offset the same as the error ( $3 \mu \mathrm{~m}$ left in the example)
- Looking through the microscope now adjust the $x$-axis micrometer so that the scales are once again aligned
- Repeat the placement procedure to check the X-axis alignment
- Note the new error
- Repeat the adjustment procedure until error is 1 micron or less


## Y-Axis Correction



## The screw is sensitive !!!!!

- Look through microscope - scales should be aligned
- Turn screw in a direction that moves scale A in the direction of the error (blue arrow)
- Stop when the scales read an offset the same as the error ( $4 \mu \mathrm{~m}$ down in the example)
- Looking through the microscope now adjust the Y -axis micrometer so that the scales are once again aligned
- Repeat the placement procedure to check the Y -axis alignment
- Note the new error
- Repeat the adjustment procedure until error is 1 micron or less


## Summary

$>$ The process should be repeated until both the X and Y axes look like the photo, both in the pre-placement and placed position.


