EE412 Black Magic (BM) Pro 4" Graphene Development and Optimization

6-3-2015

Users: N. Wang, C. Neumann Staff Advisor: Dr. Yong Cheol Shin SNF Staff Advisors: Michelle Rincon, Ted Berg, Robert Chen

Graphene @ SNF

Chemical Vapor Deposition of Graphene

Growth Development

Raman Results - Aixtron Base Recipes

Foil Growth

	Parameters			Results	
Etch	CH ₄ (sccm)	Pres (mb)	D/G	2D/G	
Ni	10	5	0.19	3.5	
Ni	15	25	0.48	2.64	
Ni	5	10	0.24	2.51	
HCI	5	5	0.18	3.01	
HCI	10	25	0.48	2.64	
HCI	15	10	0.21	3.32	
0.50 0.45 0.40 0.35 0.30 0.25			•	•	

-0.5

0.0

Pressure(5,25) Leverage, P=0.0947

0.5

1.0

Stanford ENGINEERING

0.20

0.15

-1.0

Thin Film Growths

Thin Film Growths

CH₄ Flow (sccm)

Thin Film Growths

High Quality Treatment/Foils

- Experimental growths run by Dr. Yong Cheol
- Substrate High Purity Cu from JX
- Surface treatment w/ acetic acid
- Reduced Ar flow
- Low pressure

Electrical Characterization

TLM Structures: Fabrication Details

TLM Structure 10x Optical Image

N. C. Wang and C. M. Neumann

Electrical Results – Qualitative Comparison

Electrical Results – Statistical Comparison

Conclusion

- SNF BM Pro 4" Furnace Development: →Recipes refined w/DOE →>100 successful growths!
- Mass elec. characterization confirms
 high graphene quality
- Quality dependent on substrate type, prep:

Туре	Cu Purity	Grain Size (µm)	μ _e (cm²/V-s)	μ _h (cm²/V-s)
AQ	99.8%	0.5-1	~2800	~2300
HQ	99.9%	>10	~6900	~3800

Thanks to: Yong Cheol Shin Michelle Rincon Robert Chen Ted Berg Aixtron Technical Support: Nigel Bradley, Ken Teo

GFET Fabrication

Pop Lab Graphene Model

Total Device Resistance

$$R_{d,fit} = \frac{L}{W}R_s + 2R_C + R_{series}$$

Contact Resistance

$$R_{c} = \frac{1}{W} \frac{\rho_{C}}{L_{T}} \operatorname{coth}\left(\frac{L_{C}}{L_{T}}\right) \approx \sqrt{\rho_{c}R_{S}} \text{ for } L_{C} >> L_{T} = \sqrt{\frac{\rho_{C}}{R_{S}}}$$

Sheet Resistance

Pop Lab Graphene Model

TLM Structures: Extracting R_C

Run 65

Raman – Qualification Method

N. C. Wang and C. M. Neumann

Current Growth Progress – Copper Foil Grain Size

- High growth rate
- Small grain size: ~ 1 μm
- Local bilayer
- \rightarrow H₂/Ar/CH₄ flow rate ratio control

N. C. Wang and C. M. Neumann