



# PECVD SiNx Conformal Stressor Films

 $C \ \text{HING-YING LU, MATTHEW MOREA}$ 

PI: James Harris Mentors: Jim McVittie and Usha Raghuram



### Outline

- Motivation
- Structures & Process Flow
- Design of Experiments
- Results & Discussion
  - > Thickness
  - > Stress
  - > Strain
  - Conformity
- Conclusion



### **Motivation**



Why is strain interesting?

- Band engineering by tensile strain can make Ge closer to being a direct-gap material. Ge is predicted to become direct-gap at 2% tensile strain.
- Applications: light-emitting devices, expanding the operating wavelength for modulators and detectors.



J. Michel et al., Nature Photonics 4.8 (2010): 527-534.

D. Nam et al., Optics Express 19.27 (2011): 25866.

### SiN Induced Tensile Strain

Why compressive SiN?

 Due to balance of force, compressively stressed SiN on Ge induces tensile strain in the underlying Ge.

Current progress

 Our group has demonstrated a shift and enhancement in photoluminescence peak with SiN deposited on top of the SiGe/Ge QWs.

How to further improve strain?

How about conformal SiN?





#### Stanford University

Harris Grout

Harris Group

### Main Goals



- Investigate how much thickness we can get at the back side and the side wall of a suspended structure with different SiN deposition recipes.
- Develop a SiN deposition recipe that maximizes the tensile strain in the suspended structure.
- Demonstrate that conformal SiN deposition gives a larger strain compared to top SiN deposition.



### **Test Structure & Process**





### Design of Experiments - Background Info

# Harris Group

### Strain is affected by SiN stress and thickness

- Increasing stress increases strain
- Increasing thickness increases strain but can slowly saturate

### General trends

7

- Thinner film  $\leftrightarrow$  higher stress
- Lower process power ↔ higher stress
- Lower chamber pressure ↔ higher stress
- Lower NH<sub>3</sub>/SiH<sub>4</sub> ratio ↔ higher stress (but changes little for thick SiN deposition)

### DOE – 2<sup>3</sup> Full Factorial + 1

Harris Group

- Fixed: temperature at 300 °C,  $NH_3/SiH_4$  ratio = 0.82.
- Variables: pressure, power, and deposition time
- What to measure: thickness, stress, and strain
- Center condition:

| Power (mW) | Pressure (mTorr) | Deposition time |  |  |
|------------|------------------|-----------------|--|--|
| 25         | 500              | 30 min          |  |  |

Conditions to try (9 in total for each group):

|        | Power (W) | Pressure (mTorr) | Time   |
|--------|-----------|------------------|--------|
| -      | 15        | 350              | 20 min |
| center | 25        | 500              | 30 min |
| +      | 35        | 650              | 40 min |

#### 27 wafers in total:

- > Experimental group
- Control group
- > Dummy group only SiN on Si

#### **Results & Discussion**

THICKNESS & CONFORMITY, STRESS & STRAIN





### **Characterization Tools**

### Thickness

- > Woollam M2000 Spectroscopic Ellipsometer
  - "Dummy" group
- Nanometrics Nanospec
- > Hitachi S4160 SEM (sem4160)
- Stress/strain
  - Flexus 2320 Stress Gage (stresstest)
    - "Dummy" group
  - Horiba Labram Raman spectroscopy in SNC
    - Experimental group
    - Control group



### Results – Thickness





### Thickness – Fitting by JMP



Key observation: Power and time have a stronger effect on thickness than pressure



#### Stanford University

Harris Group

### **Results – Compressive Stress**



Stanford University

Harris Group

Solid State



## Stress – Fitting by JMP



Key observations:

- Stress decreases with power, pressure, and time
- Stress changes little with time at high power
- Importance by order: pressure, power, time



Stress Predicted P=0.0405 RSq=0.99 RMSE=0.0948

Stanford University

Harris Group

### **Raman Strain Measurements**

- Raman spectroscopy used to observe molecular vibrational modes of material
- Measures inelastic (Raman) scattering of monochromatic light: a 532 nm laser in our case
- Peak shift can represent strain:  $e_{\parallel} = DW/b$ , b = -773.9 for Si.
- Fitting required to find peak shift



Stanford University

Harris Group

Solid State Lab

### Strain Comparison



| Label |     | Power<br>(W) | Pressure<br>(mTorr) | Time<br>(min) | Thickness<br>(Å) | Compressive<br>Stress (GPa) | Control Group<br>Strain | Experimental<br>Group Strain |
|-------|-----|--------------|---------------------|---------------|------------------|-----------------------------|-------------------------|------------------------------|
| 0     | 0   | 25           | 500                 | 30            | 3048             | 1.4948                      | 0.18%                   | 0.35%                        |
| 1     |     | 15           | 350                 | 20            | 1249             | 2.4005                      | -                       | 0.34%                        |
| 2     | +-+ | 35           | 350                 | 20            | 2446             | 1.6121                      | -                       | 0.42%                        |
| 3     | +   | 15           | 350                 | 40            | 2468             | 1.9437                      | -                       | 0.46%                        |
| 4     | +-+ | 35           | 350                 | 40            | 4220             | 1.6462                      | 0.17%                   | 0.34%                        |
| 5     | -+- | 15           | 650                 | 20            | 1731             | 1.6434                      | -                       | 0.23%                        |
| 6     | ++- | 35           | 650                 | 20            | 2606             | 1.1810                      | 0.09%                   | 0.23%                        |
| 7     | -++ | 15           | 650                 | 40            | 3482             | 1.2849                      | 0.09%                   | 0.35%                        |
| 8     | +++ | 35           | 650                 | 40            | 4655             | 1.0911                      | 0.07%                   | 0.26%                        |

Strain is higher for samples in experimental group

 Strain in the poly-Si is a function of the stress and thickness of the SiN film

# Strain – Fitting by JMP



Key observations:

- Lower pressure generally gives a larger strain
- Strain increases more significantly with time when power is low.
- Strain is a more complicated function such that 2<sup>nd</sup> order interactions are also important.
- Importance by order: pressure, power \* time



Stanford University

Harris Group

### Conformity – SEM Images











### Conformity



| Sample | Top Thickness<br>(Å) | Bottom Bottom/Top<br>Thickness (Å) Ratio |      | Side Thickness<br>(Å) | Side/Top Ratio |  |
|--------|----------------------|------------------------------------------|------|-----------------------|----------------|--|
| 0      | 3048                 | 956                                      | 0.31 | 2801                  | 0.92           |  |
| 1      | 1249                 | 1158                                     | 0.93 | 1388                  | 1.11           |  |
| 2      | 2446                 | 943                                      | 0.39 | 1538                  | 0.63           |  |
| 3      | 2031                 | 984                                      | 0.48 | 1584                  | 0.78           |  |
| 4      | 4220                 | 1118                                     | 0.27 | 3073                  | 0.73           |  |
| 5      | 1731                 | 1253                                     | 0.72 | 1644                  | 0.95           |  |
| 6      | 2606                 | 1209                                     | 0.46 | 2246                  | 0.86           |  |
| 7      | 3482                 | 1864                                     | 0.54 | 3199                  | 0.92           |  |
| 8      | 4655                 | 1480                                     | 0.32 | 4159                  | 0.89           |  |



### Conclusion



- Developed a SiN deposition recipe with > 2 GPa compressive stress
- Created an optimized recipe for high tensile strain
- Demonstrated that conformal SiN deposition gives a larger strain compared to top SiN deposition
- Found that the sidewall deposition is roughly equal to the top thickness and that the deposition on the bottom is not strongly affected by our experimental variables
- Future work:
  - Run strain simulations through COMSOL and verify the experimental results
  - Apply our optimized SiN recipes to Ge lasers and other photonic devices

### Acknowledgements

- Professor Roger Howe
- Dr. Mary Tang
- Dr. Usha Raghuram
- Dr. Jim McVittie
- Dr. J Provine
- Dr. Michelle Rincon
- Dr. Nancy Latta

Harris group members:

- Yusi Chen
- Muyu Xue
- Kai Zang



# Appendix

### **Tabulated Results**



| Label |     | Power<br>(W) | Pressure<br>(mTorr) | Time<br>(min) | Thickness<br>(Å) | Compressive<br>Stress (GPa) | Uniformity | Refractive<br>Index |
|-------|-----|--------------|---------------------|---------------|------------------|-----------------------------|------------|---------------------|
| 0     | 0   | 25           | 500                 | 30            | 3048             | 1.4948                      | 6.81%      | 1.9393              |
| 1     |     | 15           | 350                 | 20            | 1249             | 2.4005                      | 4.65%      | 1.9415              |
| 2     | +-+ | 35           | 350                 | 20            | 2446             | 1.6121                      | 9.67%      | 1.9291              |
| 3     | +   | 15           | 350                 | 40            | 2468             | 1.9437                      | 5.94%      | 1.9314              |
| 4     | +-+ | 35           | 350                 | 40            | 4220             | 1.6462                      | 6.68%      | 1.9318              |
| 5     | -+- | 15           | 650                 | 20            | 1731             | 1.6434                      | 9.53%      | 1.9457              |
| 6     | ++- | 35           | 650                 | 20            | 2606             | 1.1810                      | 4.73%      | 1.9402              |
| 7     | -++ | 15           | 650                 | 40            | 3482             | 1.2849                      | 5.67%      | 1.9442              |
| 8     | +++ | 35           | 650                 | 40            | 4655             | 1.0911                      | 3.36%      | 1.9375              |

Growth rate decreases with time.

$$S = \frac{Eh^2}{(1-v)6Rt}$$

- E/(1-v) = biaxial elastic modulus of substrate (Pa)
- h = substrate thickness (m)
- R = radius of curvature of substrate (m)
- t = thickness of film
- $\sigma$  = average film stress (Pa)

### F Ratio



- F-ratio is MSB (mean square between) /MSW (mean square within).
- The F-ratio can be thought of a measure of how different the means are relative to the variability within each sample. The larger this value, the greater the likelihood that the differences between the means are due to something other than chance alone, namely real effects.
- The F-ratio is the statistic used to test the hypothesis that the effects are real; in other words, that the means are significantly different from one another.

### **Tools Used**

- Wet benches
  - > Wbclean
  - Wbnonmetal
  - > Wbflexcorr
- Oxidation Furance: Thermco
- Deposition
  - Thermco LPCVD Poly
  - > STS PECVD
- Photolithography
  - YES oven
  - > Svgcoat
  - > ASML
  - > Svgdev
- Dry Etching
  - > P5000
  - > Drytek2
  - Gasonics
  - > Xactix Xenon Difluoride

#### Sputtering and SEM

- > Hummer
- > SEM4160 (Hitachi)
- Characterization
  - > Woollam
  - > Stresstest
  - > Nanospec
  - Horiba Raman (SNC)

