Variable Trench Optimization for DRIE of SOI in PT-DSE

EE 412 Final Presentation

Ian Flader, Yunhan Chen

Mentor: Usha Raghuram

6/3/2015

STANFORD UNIVERSITY

Outline

- Deep Reactive Ion Etching (DRIE)
 - Background
 - Etch Characteristics
 - Blowout
 - Scalloping
 - Taper
 - Aspect Ratio Dependency (ARD)
 - Notching
 - Grassing
- Results
 - Optimized bulk etch
 - SOI

DRIE (Bosch etch)

- Passivation (Deposition)
 - Polymer deposition in C_4F_8
- Depassivation (Etch A)
 - High electrode bias etch of bottom polymer
- Etching (Etch B)
 - Silicon etch in SF_6

Depassivation

Bosch etch process (Reza Abdolvand, Farrokh Ayazi)

University of Michigan – STS Pegasus

- Trench widths: 0.5 to 50 um
- Device Thicknesses: 20 and 40 um

DRIE characteristics

- Aspect Ratio Dependence (ARD)
 - Etch rate varies with trench size
- Blowout (undercut)
 - Lateral etching underneath mask
- Scalloping
 - Nonuniform etch due to three cycle process
- Tapering
 - Slower etch rate deeper in trench
- Notching (footing)
 - Lateral etching at silicon-insulator interface caused by charging
- Grassing
 - Unetched passivation polymer acts as masking feature during the etch step

- a) Aspect Ratio Dependence (ARD)
- b) Blowout (Undercut)
- c) Scalloping
- d) Tapering

e) Notching

f) Grassing

DRIE characteristics

Tradeoffs necessary

•Grass/blowout

- Inversely relatedGrass/sidewallroughness
 - Inversely related
- •Blowout/sidewall roughness
 - Related

Variable Increased	Etch Rate	Sidewall Roughness	Feature Blowout	Grass	Photoresist Selectivity	Polymer Breakdown
Etch gas	↑	1	↑	\downarrow	1	1
Dep gas	↓	\downarrow	\leftrightarrow	↑	1	\downarrow
Etch:Dep time ratio	↑	↑	↑	\downarrow	\leftrightarrow	\leftrightarrow
Pressure	↑	1	↑	\downarrow	↑	1
Etch coil power	↑	↑	↑	\downarrow	↑	1
Dep coil power	¥	¥	¥	↑	\leftrightarrow	\downarrow
Platen power	\leftrightarrow	\leftrightarrow	\leftrightarrow	↓	Ļ	\leftrightarrow
Etch EM1 value	¥	\leftrightarrow	¥	\leftrightarrow	1	\downarrow
Etch EM1 delay time	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow	\leftrightarrow

SNF Wiki – STS2 etch characteristics

Yushi-SOI-HAR

JMP-Design of Experiment (DOE)

• We designed a screening DOE to find out the region of interest.

۹ 🔍 💌			EtchA Bias	EtchB Bias				
•	Pattern	Temperature	Voltage	Voltage	ARD	Blowout	Scalloping	Taper
1	+	1	-1	-1	•	•	•	•
2	-++	-1	1	1	•	•	•	•
3	-+-	-1	1	-1	•	•	•	•
4	+-+	1	-1	1	•	•	•	•
5	++-	1	1	-1	•	•	•	•
6	+	-1	-1	1	•	•	•	•
7	+++	1	1	1	•	•	•	•
8		-1	-1	-1	•	•	•	•

- Responses
 - Aspect RatioDependence(ARD)
 - Blowout
 - Scalloping
 - Taper

• Factors

Temperature EtchA Bias Voltage EtchB Bias Voltage

JMP – Design of Experiment (DOE)

- 30C/0C

- 300V/200V
- Etch B - 150V/10V

Design of Experiment (DOE) Results

	Pattern	Temp	EtchA	EtchB	ARD	Blowout	Scalloping	Taper]
1	"+"	30	200	10	1.30	252	111	1.32	
2	"-++"	0	300	150					
3	"-+-"	0	300	10	N/A	50	N/A	N/A	
4	"+-+"	30	200	150	1.33	202.9	62.5	1.06	
5	"++-"	30	300	10	1.39	128.9	128.9	1.12	
6	"+"	0	200	150					
7	"+++"	30	300	150	1.37	134	134	1.06	
8	""	0	200	10					

- Full optimization difficult due to grassing
- Optimization region found
- Further fine tuning performed

Fine tuning

- Tapering
 - Ramping
 - ↑ etch time
 - \downarrow dep time

- Blowout
 - $-\downarrow$ etch time
 - $-\uparrow$ dep time
 - $-\downarrow$ etch power/bias

Variable trench comparison – STS Pegasus/PT-DSE

Michigan - STS Pegasus, 40 um depth

Stanford – PT-DSE, 20um depth

Stanford – PT-DSE, 40um depth

Variable trench comparison – STS Pegasus/PT-DSE

ord	Depth	ARD	Blowout (nm)	Scalloping (nm)	Taper
anf	20um	1.23	169.0	< 100	1.03
St	40um	1.23	168.6	107.0	1.10
un					
higa	Depth	ARD	Blowout (nm)	Scalloping (nm)	Taper
Mic]	40um	N/A	150.0	< 100	1.15

- Comparable results between three recipes
- Variable bulk etch for PT-DSE ready
- SOI finish etch recipe required

SOI recipe (20um device layer)

- Loop 1
 - Slow, gentle etch to reduce blowout
- Loop 2
 - High power etch with ramping to provide sufficient etch rate for HAR trenches
- Loop 3
 - Slow, gentle etch with pulsing to reduce notching during over etch
 - Recommended by Plasma-Therm

Loop 1 - No. of cycles = 20

Parameter	Dep	Etch A	Etch B
C4F8 sccm	150	to pump	to pump
SF6 sccm	150 to pump	150	30
Ar sccm	30	30	30
Pressure	30	35	40
ICP watts	1500	1500	1500
V p-p	10	250	10
waveform	1	1	1
Step time (s)	1.5	1	1

Loop 2 - No. of cycles = 34

Parameter	Dep	Etch A	Etch B
C4F8 sccm	150	to pump	to pump
SF6 sccm	150 to pump	150	250
Ar sccm	30	30	30
Pressure	25	40	60
ICP watts	2000	2000	2000
V p-p	10	250	100
waveform	1	1	1
Step time (s)	2.3	1	1.5

Loop 3 – No. of cycles = 90

Parameter	Dep	Etch A	Etch B				
C4F8 sccm	125	15	15				
SF6 sccm	75 to pump	75	100				
Ar sccm	30	30	30				
Pressure	20	20	20				
ICP watts	1600	1250	1250				
V р-р	10	400	215				
waveform	3	3	3				
Step time (s)	2	2	1.5				

(a) Bulk etch on Polysilicon on Insulator. Loop 1 - 20 cycles; Loop 2 - 34 cycles (b) Bulk and insulator etch on Polysilicon on Insulator. Loop 1 - 20 cycles; Loop 2 - 34cycles; Loop 3 - 90 cycles

SOI issues in PT-DSE

- Etch issues observed upon 3rd pass
- Pulsing waveform dysfunction
 - Notching
 - Bowing (enhanced blowout)
 - Photoresist burnt

Low frequency bias pulsing reduces notching

- Bias pulsing reduces ionic charging of the oxide layer below the silicon device layer by allowing charge to dissipate during the pulsing "off" time.[1-2]
- STS2 has low frequency (380kHz) bias voltage and 40Hz pulsing with duty cycle of 12%-20%

M. Wasilik and A.P. Pisano, "Low frequency process for silicon on insulator deep reactive ion etching," Proc. SPIE, 4592, 462-472 (2001).
K. Yonekura, M. Kiritani, S. Sakamori, T. Yokoi, et al, "Effect of charge build-up of underlying layer by high aspect ratio etching," Jpn. J. Appl. Phys., 37, 2314-2320 (1998).

Current PT-DSE status

- PT-DSE should be able to provide a 100kHz bias voltage with pulsing. Duty cycle of pulsing can be selected as 25% (waveform 2) and 15% (waveform 3).
- PT-DSE currently cannot generate expected pulsing waveform.
- Aside from the waveform problems there exists a 50 Vpp RF noise signal which goes on and off on the bias line.
- Jim McVittie is working on fixing the waveform to match the STS2 waveform.
- We provided Plasma-Therm with Poly-SOI wafers for an etch demo. Further recipe development will be continued upon the demo results and repair of the tool.

Results SEM Images – 1.5 µm Trench

Results SEM Images – 1.5 µm Trench

🖬 Plasma-Therm

Results SEM Images – 1 µm Trench

Results SEM Images – 1 µm Trench

🖬 Plasma-Therm

Contributions

- Variable trench optimization (0.7 1.5 um widths)
 - 20um
 - 40um
- PT-DSE has waveform pulsing issues
 - Manufacturer level issue
 - SOI development may be continued upon resolution
 - Optimized recipes may be used for HAR variable trenches

Thanks! & Questions?

