Sapphire Flip-chip Thermocompression and Eutectic Bonding for Dielectric Laser Accelerator

Huiyang Deng, Yu Miao

Project Mentors:

Prof. Roger T. Howe, Dr. Mark Zdeblick, Dr. Anthony Flannery, Usha Raghuram

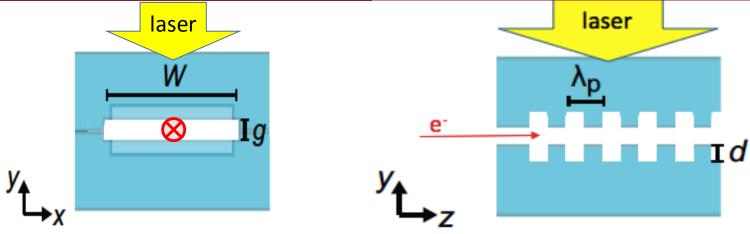
Research Advisors:

Prof. James S. Harris, Prof. Olav Solgaard

Outline

- Motivations
- Au/Au Thermocompression Bonding for Sapphire Chips
- Au/Sn Eutectic Bonding for Sapphire Chips
- Bonding Sapphire Chips for Dielectric Laser Accelerator
- Summary

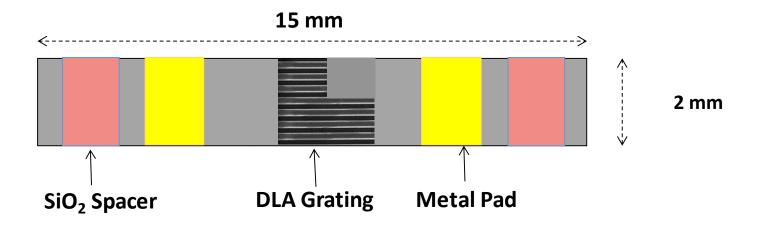
Introduction

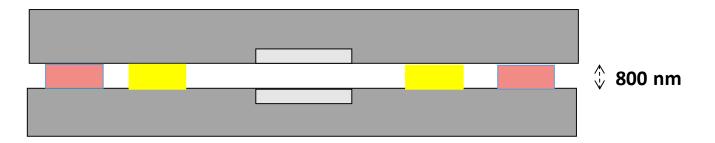


Double gratings can be used to accelerate electrons with laser

Engr. 241 Autumn 241

Motivation


SiO₂ --> Sapphire grating: high LIDT & high n


- Double grating better than single grating
- But difficult to fabricate double grating monolithically (sapphire hard to etch)

\rightarrow Fabricate two halves + Bonding

Project Goal

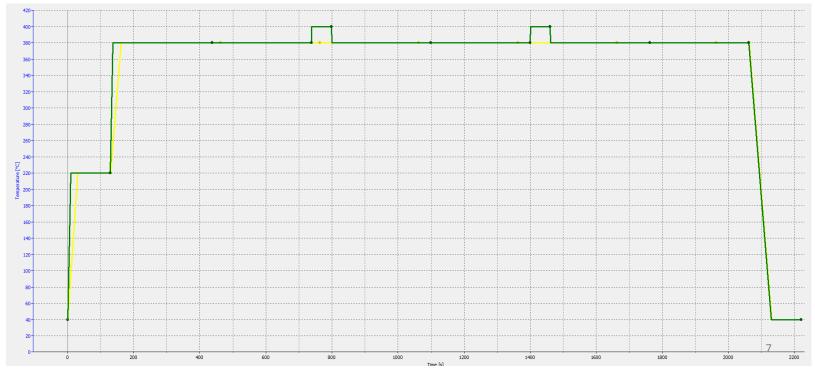
Bond Top Half to Bottom Half Using Intermediate Layers (two chips do not fall apart during handling)

Stanford University

Finetech FINEPLACER Lamba Bonder

- Overlay vision alignment with fixed beam splitter Max field of view: 6.7 mm x 5.4 mm Sub-micron placement accuracy
- Bonding Force: 0.1 20 N
- Heating temperature: 400°C max Below 380°C is the allowed range
- Real time process observation camera
- Chip size: 0.1x0.1mm 15x15mm

• N₂ box

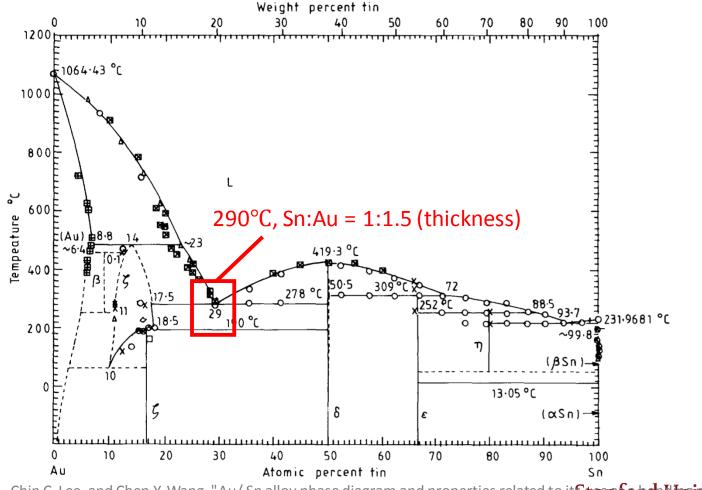

Au/Au mermocompression

Ronding

- Au/Au brought into atomic contact applying force and heat simultaneously
- The atoms migrate from one crystal lattice to the other one based on crystal lattice vibration due to atoms motion
- 20nm Ti/ 450nm Au on each side

Temperature Profile

Dogulto


	cleaning	pressure	bonding
1st	Х	166KPa	Х
2nd	\checkmark	166KPa	\checkmark
3rd	\checkmark	1MPa	$\checkmark\checkmark$

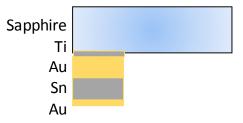
Successful bonding @ Max Time (45min) + Max Temperature (380°C)

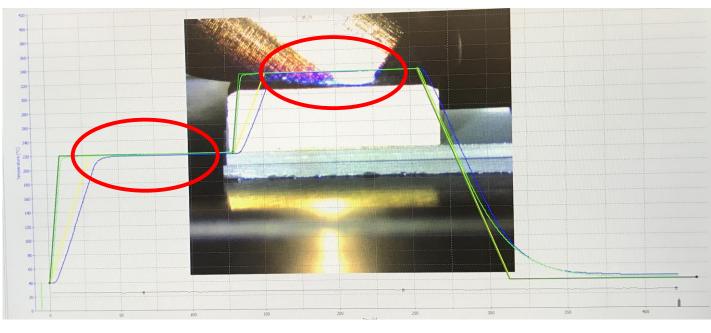
- ✓ Cleaning is criticle (O₂ plasma + SRS100@70°C 30min +wear gowning);
- ✓ Higher pressure -> Better thermocompression bonding
- Requires very long bonding time
- Bonding strength good, but could be improved

Au/Sn Eutectic Bonding

- An intermediate metal layer produces a eutectic system.
- Eutectic metals are alloys that transform directly from solid to liquid state
- At a specific composition and temperature without passing a two-phase equilibrium

Matijasevic, Goran S., Chin C. Lee, and Chen Y. Wang. "Au/ Sn alloy phase diagram and properties related to it Stanford University Thin Solid Films 223.2 (1993): 276-287.

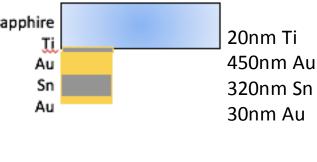

Au/Sn Eutectic Bonding


Sn/Au Eutectic Bonding

• 20nm Ti/450nm Au/320nm Sn/30nm Au

Processes:

- 1. Deposit metal stack
- 2. O₂ plasma + SRS 100 + wear gowning
- 3. Pre-heat the sample during the bonding process
- 4. 20N of max bonding force

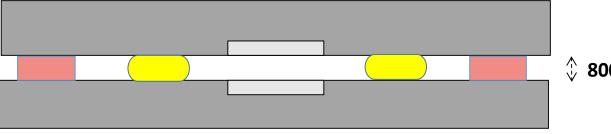


Au/Sn Eutectic Bonding Results

Dropping test from 1.2m high table

					Sap
	280°C	290°C	300°C	340°C	
5min	1	2	2	2	
7min		5	1	1	
9min	1	1			


Successful eutectic bonding with metal stack

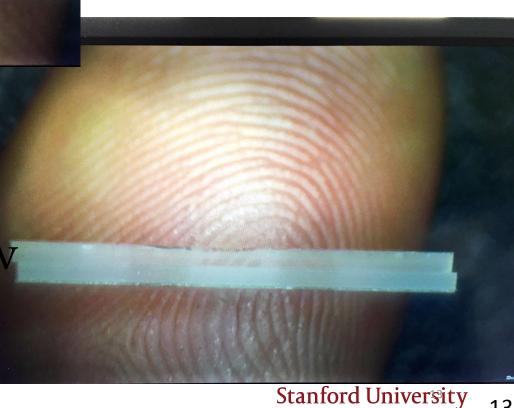

- ✓ Obvious melting and eutectic forming;
- ✓ Optimal recipe: 290°C 7min (repeated 4 times, 4-7 drops);
- ✓ Bonding time is shorter & temperature is lower;
- Cleaning is very critical;
 - no cleaning -> no bond;
 - cleaning -> good bond;
 - cleaning-> sit 5 days -> no bond -> redo cleaning -> good bond
 Stanford University
- Top layer of 30nm Au is critical (prevent Sn->SnO₂);

Sapphire Dielectric Laser Accelerator Spacer: accurately control the gap to be 800nm

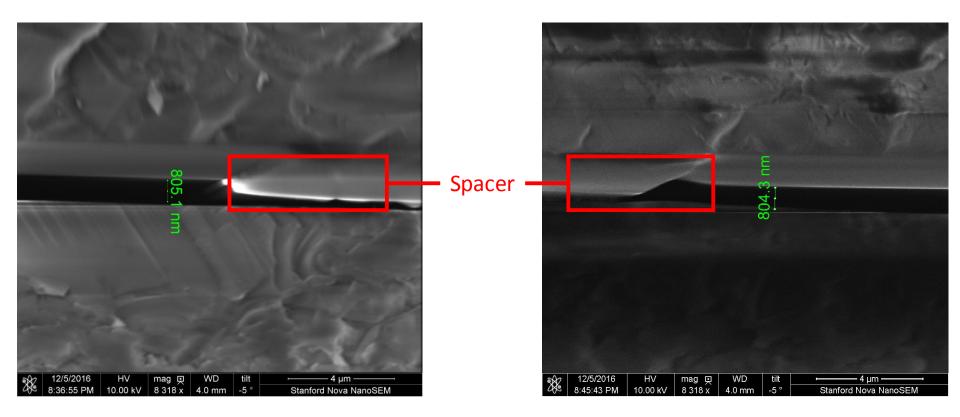
800nm SiO₂

20nm Ti/450nm Au/320nm Sn/30nm Au

- ✓ Metal stack for eutectic bonding
- ✓ HDPCVD oxide spacer


↑ 800 nm

Chips well bonded


Top View

Cross-section View

Sapphire Dielectric Laser Accelerator

Cross-section SEM to Check 800nm Gap

Summary

Successful thermocompression and eutectic bonding

 \checkmark Cleaning is critical for bonding

✓ Au/Sn eutectic bonding performs better than Au/Au thermocompression bonding in this flip-chip bonder

X particles + not enough pressure

-> higher pressure (other model 400N) + better environment

✓ Top layer of Au is critical for eutectic bonding metal stack

Acknowledgement

Prof. Roger Howe

Dr. Mark Zdeblick

Dr. Anthony Flannery

Prof. James Harris

Prof. Olav Solgaard Stanford University

Acknowledgement

Staff: Usha Raghuram, Mary Tang, Maurice Stevens, Xiaoqing Xu, Michelle Rincon TA: Caitlin Chapin

- E241 classmates (Ki Wook Jung, Heungdong Kwon, Karen Dowling and Mimi Yang)
- Harris Group members
- Solgaard Group members
- **ACHIP Program members**
- Friends and families

ExFab

Stanford University