Wafer-wafer bonding using silicides for high-temperature applications

Team members: Kirby Boone, Eric Wu SNF Mentors: Mahnaz Mansourpour, Usha Raghuram External Mentor: J Provine

Primer on wafer bonding

- Thermocompression: Heat sticky material between two substrates
- Anodic: Diffusion of alkali ions between Pyrex glass and Si wafer
 - Performed at 180°C to 500°C
- Eutectic: bond with mixture that melts at lower temperature than constituents
 - Performed at 150°C to 500°C
- Fusion: stick together without intermediate
 - Ultra-clean, ultra-flat, chemically reactive surface (dangling bonds).
 - Ultrahigh temperature ~1000°C

Figure adapted from He, R., Kim, C.J., J. Micromech. Sys., 2007

Applications of nickel silicide wafer bonding

Packaging and integration for extreme environment MEMS devices

- Example application: vacuum package and vertical interconnect for MEMS thermionic energy converters
- NiSi forms at low (~250-450°C) temperature, melts at higher (~900°C) temperature
- Conductive: NiSi = 14-20 μΩ cm [1], NiSi₂ = 40-50 μΩ cm [1]
- May be compatible with corrosive environment, i.e. Cs vapor

[1] Saraswat, K. "Interconnections: Silicides." EE311 Lecture slides. Stanford University. Left figure from Lee, J.-H. *et al.*, *J. Micromech. Sys.* 2014

Applications of nickel silicide wafer bonding

More applications: hybrid/heterogeneous integration

Left: Integration of III-V onto Si by nickel silicide bonding, from Dai, X., *et al. Adv. Func. Mat.* 24, 4420-4426. (2014)

Right: Fabrication of Si nanowire arrays for neural recording by nickel silicide bonding and Si etch, from Liu, R. *et al. Nano Lett.* 17, 2757-2764. (2017).

Introduction to the SNF evbond

- EV501 bonder
 - Heating chuck with pressure plate in a vacuum chamber (7.5 x 10⁻⁶ torr)
 - Capable of doing anodic, eutectic, solder bonding
- Process parameters for tool
 - Bonding temperature, between RT-500°C
 - Force applied by chuck, 0-3340N
 - o Bonding time

Variables and Experimental Design (Factorial)

Temperature	Force	Bonding ring fill factor	
300°C	3340 N	Unpatterned	
350°C	1660 N	75%	
450°C	1120 N	50%	
	540 N	25%	
	525 N	10%	

- Varied bonding area, scaled force to keep bonding pressure constant
- Pruned experiments that were likely to fail: if bond fails entirely, little reason to try lower force, lower temperature, lower area

Fabrication flow for patterned bonds

- Polysilicon wafer: LPCVD 1-2 μm polysilicon at 620°C, unpatterned
- Ni wafer: 10 nm Ti/150 nm Ni evaporated and patterned (Heidelberg) by liftoff
- Pre-bond clean and oxide etch (critical step for bonding):
 - 5:1 water:29% ammonium hydroxide for
 5 min to strip NiO from Ni wafer
 - 50:1 HF for 1 minute to strip SiO₂ from polysilicon wafer
- Bond in evbond

SEM of nickel silicide wafer bond

Cross section of cleaved bonded wafer pair

Nickel silicide bond is visible

Actual polysilicon thickness around 1.5 µm

Nickel silicide appears to extend ~250 nm into polysilicon layer

Wafer Saw and Razor Blade Testing Methodology

- Qualitatively assessed bond quality
- Dicing or cleaving wafer
 - o Wafers that are well bonded should stay together
- Razor blade test: insert razor blade into bonding interface to separate pieces
 - o Lousy bond \rightarrow pieces should pop apart cleanly
 - o Good bond \rightarrow break off bits of silicon
- Assigned numerical scores for bond strength/quality
 - o 2 for good bond, 1 for moderate quality bond, 0 for no bond

Dependence on temperature and area

Higher temperatures with larger bonding areas produce better results

(2 is good, 1 is moderate quality, 0 is no bond)

Dependence on force and temperature

Bond quality: temperature and force 1 1 450 Temperature [C] 0 1 350 0 300 1 1 225 1120 560 1660 3340 Force

Higher temperatures and higher bonding forces result in better bond quality

(2 is good, 1 is moderate quality, 0 is no bond)

Qualitative testing trends - pressure

Bonding quality score vs. pressure

Bond pressure defined as force / (nickel pattern area)

Bond quality has no dependence on pressure

Takeaway: if you scale area, don't scale pressure, use the max force you can

Double Cantilever Beam sample fabrication

Bonded for 40 minutes at max force (3340 N)

Diced on DISCO wafersaw

Double Cantilever Beam testing methodology

 $G = \frac{P^2}{2B} \frac{dC}{da}$ P: load, C: Compliance, a: crack length

$$\frac{\Delta}{2} = \frac{Pa^{3}}{3EI} \qquad I = \frac{Bh^{3}}{12} \qquad C_{beam} = \frac{\Delta}{P} = \frac{8a^{3}}{Bh^{3}E}$$

E: Young's modulus, I: moment of inertia

Delamination Energy:
$$G = rac{12P^2a^2}{Bh^3E}$$

Double Cantilever Beam tensile testing results

High Temperature (450°C)

You have selected 18 points.

Gc 3.66686	standard d 0.05428	eviation	
crack length	Pc	Gc	C
18.43289	1.1442	3.57149	253.83535
19.63161	1.0947	3.6997	305.59623
20.88074	1.0202	3.62753	366.5594
22.86294	0.9373	3.66034	479.10307
24.91224	0.8689	3.72547	617.51138
27.13807	0.7976		795.52525

High temperature specimen - Ni side down.

Clear crack propagation through the Ni (~150 nm) - NiSi (~250 nm) - polySi interfaces

Catastrophic failure appears in polySi/Si interface - very flat.

High temperature specimen - Ni side down.

Clear crack propagation through the Ni (~150 nm) - NiSi (~250 nm) - polySi interfaces

Catastrophic failure appears in polySi/Si interface - very flat.

High temperature specimen - Ni side down.

Clear crack propagation through the Ni (~150 nm) - NiSi (~250 nm) - polySi interfaces

Catastrophic failure appears in polySi/Si interface - very flat.

Double Cantilever Beam tensile testing results

Low temperature specimen

- Incomplete bonding
- Multiple crack propagation interfaces

Low temperature specimen - poor bonding and first interface. PolySi side down.

Low temperature specimen - poor bonding and first interface. PolySi side down.

Low temperature specimen - poor bonding and first interface. PolySi side down.

Conclusions

- Pre-clean and oxide etch is of utmost importance
- NiSi formation is straightforward at 450°C and forms a strong enough bond through solid state diffusion that catastrophic failure occurs in delamination of the polysilicon-Si interface.
 - Would be useful to perform DCB testing on other bonding forms to verify whether the NiSi bond is in fact brittle or if it is just polySi/Si
 - o Dauskardt: "metal joints are typically in the range of 100-1000 J/m²
- Use highest temperature and bonding force that is compatible with your process

Future work

- Additional double cantilever beam delamination testing
 - o More on NiSi to verify delamination behavior
 - More bonding techniques to determine if brittleness is because of Si
- SEM/XPS of DCB samples to verify
- Application specific testing
 - o Hermiticity
 - o Thermal shock and cycling, Annealing effects
 - o Conductivity
 - o Cesium vapor compatibility
- Additional materials systems: Cobalt, Titanium, Platinum (\$)

Acknowledgements

- Stanford Nanofabrication Facility
 - Mahnaz Mansourpour, Dr. Xiaoqing Xu, Uli Thumser, Maurice Stevens, Prof. Roger Howe, Dr. Mary Tang
- Dr. J Provine external mentor
- Dr. Mark Zdeblick additional advice
- Charmaine Chia SEM operation
- Prof. Reinhold Dauskardt and Yichaun Ding DCB testing and analysis

Questions?

Backup slides

Example of moderate quality bond

Bonded pair somewhat intact after dicing

Some pieces could be separated with razor blade, others showed signs of bonding

Example of good quality bond

Almost entire wafer stayed together during dicing

Razor blade test chipped fragments off of samples rather than separated them

Surface Roughness

Solid State Diffusion

$$\frac{c(x,t)-c_0}{c_s-c_0} = 1 - erf\left(\frac{x}{2\sqrt{D\cdot t}}\right) \qquad \text{fraction/cm}^3$$
$$D_{Ni,Si} = 2 \times 10^{-3} \exp\left(-\frac{0.47 \ eV}{k_B \ T}\right) \ cm^2/_s \qquad \text{Referenced from Journal of Applied}$$

Referenced from: Weber, E.R. Transition Metals in Silicon. *Journal of Applied Physics.* A30, 1-22. (1982)

- At 40 minutes bonding time and 450°C, simple calculation yields that Ni will be 10% of the atomic fraction at a depth of <u>1.25 mm</u>.
- This is very deep likely that there are more complex diffusivity calculations that could be made.
- Additionally, the NiSi reaction is probably blocking further diffusion just as an oxide layer might.

Low Temperature specimen: second interface