Au-Sn Eutectic chip-bonding for high heat flux vapor chamber applications

Staff Mentor SNF

Usha Raghuram

External Mentors SmallTech Leslie Ann Field Mateusz Bryning Kalyan Katuri Phil Barth

Additional Mentor **Stanford NanoHeat Lab** Ki-Wook Jung Prof. Mehdi Asheghi Prof. Kenneth Goodson

Motivation

Inside of the proposed vapor chamber design

Design of Experiment – Bond Quality

Objective (Goals)

- Achieve high bond strength and quality keeping low bond area
- minimize overflow of eutectic alloy
- Push boundaries on understanding Au-Sn Eutectic bonding

Variables

• Substrate Materials

Lower substrate – Si Upper Substrate – Pyrex

- Recipe
- Bonding Temperature
 Bonding Time
 Bonding Pressure
 Bonding Area
 Primary Variables

Main parameters

Bonding Areas

• $9 \text{ mm}^2 \text{ } 49 \text{ mm}^2 \text{ } 100 \text{ mm}^2$

Bonding Temperatures

• 379°C 350°C 320°C (eutectic temp: 280°C)

Bonding Time

- Thermocompression: 300 seconds
- Bonding :1500 seconds

Bonding Forces

• 50N 70N 100N

Cooling of bonded chip

• To room temperature for 1000 seconds

Bonding : Fine-tech Lambda Flip-Chip Bonder

• Alignment Issue

15mm x 15mm

Substrates before Bonding

• Non-Uniform Pressure Application

One Sided pressure application

Bonding non-uniformity

Results : Bond Quality and uniformity

Bonding Results : Overflow

Results : Bond Overflow

Results : Overflow

Temperature of base plate (°C)

Bonding Results : Microstructure

Initial Dendrite Formation

Dendrites Merging

Dendrites: Information about the cooling rates

Sparse Dendrites

Closely-spaced Dendrites

Higher cooling rates results in the formation of sparse dendrites and smaller grain sizes

Kirkendall Voids

Formed at interfaces because of different diffusion rates of different species (Au/Sn)

Why is this exciting?

- We can use interferometry to detect voids formed at the interface of Pyrex chip without breaking it open
- Also an indication that the bond is really weak and bad.

Restriction of Overflow by misalignment (accidental) of bonding sites

How it happens -

- Unreacted metal at edge acts as stopping layer
- Oxidized Tin at the edge acts as a sealant and restricts eutectic metal within the bonded zone

Why is this exciting?

 Saves time consuming, complicated and expensive litho steps involved in making stoppers, trenches or grooves

Success rate?

Conclusions & Suggestions

Suggestions for Au-Sn bonding –

- $T_{bond} > 330^{\circ}C$
- Pressure uniformity is very important (P > 0.5 Mpa)
- Flip chip bonder is not the best option for larger bond areas (>0.3 mm²)

Tilt Issue fix (flip chip bonder)

- Perform a set of experiments by taking one pyrex and one Si wafer while varying Z – positions of the base plate.
- The uniformity of interference rings will give information about pressure uniformity for varying Z.
- Perform final experiments with that specific Z value.

Future Scope

- Effect of cooling rate on bond uniformity and strength (dendrite length and spacing has a positive correlation with cooling rate)
- Interferometry to detect voids (quantitative prediction)
- Misalignment to restrict overflow
- Localized heating using electrical source and patterned heater lines for eutectic bonding instead of heating up holder and base.

NanoFoil®

A reactive multi-layer foil that provides localized heat up to 1500°C in a nanosecond!

Thank You

Surface Area of the bonding region(% of the 1 cm x 1cm)	Bond Parameters(Si	substrate)						
	T _{uniform} (°C)	Δt _{uniform} (min)	T _{bond} (°C)	Δt_{bond} (sec)	Force(N)	Cooling(S)	Bond Type	Result
S11 04 04(s)		300	5	320	1500	50	1000 Eutectic	No bond
S21 18 07(s)		300	5	350	1500	50	1000 Eutectic	partially bonded, check phases
S20_14_17(s)		300	5	380	1500	50	1000 Eutectic	partially bonded, check phases
S16 05 18(s)		300	5	320	1500	70	1000 Eutectic	No bond
512_09_12(s)		300	5	350	1500	70	1000 Eutectic	nartially bonded
S13_02_18(s)		300	5	380	1500	70	1000 Eutectic	partially bonded
S15_05_05(s)		300	5	320	1500	100	1000 Eutectic	partially bonded, check phases
S14_21_09(s)		300	5	350	1500	100	1000 Eutectic	partially bonded, check phases
S8_14_14(s)		300	5	380	1500	100	1000 Eutectic	partially bonded, check phases
S22_12_07(m)		300	5	320	1500	50	1000 Eutectic	bad bonding
S1_02_24-Recipe 2(m)**		300	5	350	1500	50	1000 Eutectic	partially bonded, check phases
S23_22_17(m)		300	5	380	1500	50	1000 Eutectic	partially bonded, check phases
S24_09_19(m)		300	5	320	1500	70	1000 Eutectic	bad bonding
S18_15_06(m)		300	5	350	1500	70	1000 Eutectic	partially bonded, check phases
S25_19_02(m)		300	5	380	1500	70	1000 Eutectic	partially bonded, check phases
S17_03_06(m)		300	5	320	1500	100	1000 Eutectic	bad bonding
S19_03(m)		300	5	350	1500	100	1000 Eutectic	partially bonded, check phases
S4_24_16-Recipe 3_HT(m)**		300	5	380	1500	100	1000 Eutectic	partially bonded, check phases

Double Exposure

Exposure Duration – 0.8 ~ 1 s (for 1 μ m PR) \triangleleft

Exposure Duration – $1.8 \sim 2.4$ s (for 1 µm PR)

PR residue as a result of insufficient exposure time (0.9 s) during second exposure

Pyrex Wafers

Sample Fabrication

Silicon Wafers

Pyrex Wafers

Needles (Rice Grains)

Early stages of dendrite formation caused by very high cooling rate

Au rich microstructure formed because of incomplete diffusion of Au into Sn (high cooling rate)