Low-Cost and Robust Printing of Resistance Thermometer Sensors using the Voltera

Ruiqi Chen, Alex Gruebele and Cheng Liu

Mentors: Swaroop Kommera, SNF Staff Randy Stoltenberg, Lockheed Martin Don Gardner, Consultant, SLAC

Stanford University

Motivation:

- Sensor networks utilize arrays of sensors to monitor and control systems
- Scaling up is difficult using traditional semiconductor fabrication techniques
- Issues often arise during network development and deployment:
 - Subtractive process causes waste
 - Conforming to curved surfaces
- Additive manufacturing allows sensor networks to be quickly prototyped and implemented on a large scale

Low-cost 3D printing of sensors and interconnects Integrated with soft materials and composites

Voltera V-One

100um 150um 225um Stanford University

Objective:

This project will look at fabricating and testing Resistance Temperature Detector sensors (RTD) in order to characterize useful parameters for sensor network printing:

- Ink (4)
- Substrate (2)
- Nozzle size & Sensor geometry (2)
- Anneal temperature (2)

Outputs:

- Temp vs resistance
- Sheet resistance / bulk resistivity
- Thickness, width

Design of Experiments Table

<u>Ink</u>	<u>Substrate</u>	<u>Nozzle Size (um)</u>	<u>Anneal Temp (C)</u>
Voltera Conductive	Glass	150	220
Voltera Conductive	Glass	150	300
Voltera Conductive	Glass	100	220
Voltera Conductive	Glass	100	300
Voltera Conductive	Kapton	150	300
Voltera Conductive	Kapton	150	220
Voltera Conductive	Kapton	100	300
Voltera Conductive	Kapton	100	220
Voltera Flexible	Glass	150	155
Voltera Flexible	Glass	150	200
Voltera Flexible	Glass	100	155
Voltera Flexible	Glass	100	200
Voltera Flexible	Kapton	150	155
Voltera Flexible	Kapton	150	200
Voltera Flexible	Kapton	100	155
Voltera Flexible	Kapton	100	200
CM EXP-2649	Glass	225	150
CM EXP-2649	Glass	225	200
CM EXP-2649	Kapton	225	150
CM EXP-2649	Kapton	225	200
CM 118-41	Glass	225	175
CM 118-42	Glass	225	220
CM 118-43	Kapton	225	175
CM 118-44	Kapton	225	220

Resistance / Temp Measurements

Voltera Conductive Ink R-T curves

Voltera Flexible Ink R-T curves

Increasing temp.

Decreasing temp.

Creative Materials Inks R-T curves

Conclusions: Anneal Temperature

- In some cases, we notice especially large hysteresis
- Due to testing RTD at higher temperature than these samples were annealed at, resistance further decreased while test performed

Conclusions: Substrate Thermal Expansion

• More hysteresis on Kapton than glass due to thermal expansion (assumning ink isotropic)

$$R_{\text{initial}} = \rho \frac{L}{\text{wt}} \rightarrow R_{\text{thermal expansion}} = \rho \frac{(1 + \alpha \Delta T)L}{(1 + \alpha \Delta T)w * (1 + \alpha \Delta T)t} = \rho \frac{L}{\text{wt}} \frac{1}{(1 + \alpha \Delta T)}$$

t

w

Conclusions: Sensor sensititivity

• 2 methods to represent sensitivity:

Reference:

A platinum based RTD sensor has a sensitivity of 0.385 (%/°C)

```
Stanford University 14
```

Sheet Resistance

 Independent of sensor geometry, so good for comparison

Sheet resistance:
resistivity, thickness $R_s = \frac{\pi R_{01,23}}{\ln 2}$ $[\Omega/sq]$ RTD resistance:
resistivity, thickness,
width, length $R = \rho \frac{L}{w t} = R_s \frac{L}{W}$ $[\Omega]$

Sheet Resistance

Nozzle (um)	Ink	Substrate	Cure Temp (C)	Sheet Resistance (mOhm/sq)	Bulk Resistivity (Ohm*m)
150	Conductive	Glass	220	9.51	8.45E-07
150	Conductive	Glass	300	7.36	1.03E-06
150	Conductive	Polyimide	220	7.83	8.75E-07
100	Conductive	Glass	220	8.70	6.85E-07
100	Conductive	Glass	300	34.36	1.57E-06
100	Conductive	Polyimide	220	7.10	7.22E-07
150	Flex	Glass	155	9.73	2.97E-07
150	Flex	Glass	200	8.12	2.47E-07
150	Flex	Polyimide	155	9.59	2.92E-07
100	Flex	Glass	200	16.36	3.32E-07
100	Flex	Glass	155	30.49	2.40E-06
100	Flex	Polyimide	155	12.26	1.87E-07
100	Flex	Polyimide	200	4.14	1.68E-07
225	EXP-2649	Glass	200	22.63	1.61E-06
225	EXP-2649	Glass	150	18.39	1.17E-06
225	EXP-2649	Polyimide	150	19.83	1.51E-06
225	118-41	Glass	200	4.83	7.73E-07
225	118-41	Glass	175	3.58	4.73E-07
225	118-41	Polyimide	175	8.39	9.81E-07

Thickness measurement with micrometer

(Voltera conductive ink datasheet lists 12 mOhm / sq)

Sheet Resistance

Printing Challenges: Line Width

Line Width / Nozzle Diameter					
	Glass	Polyimide			
Conductive	2.058	2.792			
Flex	2.158	3.678			
EXP-2649	1.033	1.267			
118-41	1.000	0.911			

Same area

Trim length thinning because plunger turns only once This is a problem when trying to print with long trim

Thickness measurement under microscope

Printing Challenges: Trim length & Thinning

Anti-stringing distance

(retrace distance per trim)

Trim length

(max distance in one path)

Printing Challenges: Nozzle Clog

Nozzle clogging

- Syringe purge
- Sonicate in acetone
- Leave in solvent
- Refrigerate

Printing Challenges: Silicone substrate

Acknowledgements

Swaroop Kommera, SNF Staff Roger Howe, Mary Tang Xiyuan Chen Randy Stoltenberg, Lockheed Martin Don Gardner, Consultant, SLAC