MOCVD Growth Calibration for GaN LED on Silicon

Jieyang Jia, Yusi Chen Mentored by Xiaoqing Xu EE412, Spring 2015

Outline

Outline

Motivation

UV/blue/white light LED

- Multi-billion \$ market
- Nobel prize

Silicon substrate

- Cost effective
- But makes growth challenging

Value to SNF

- Enabling short-wavelength LED research
- Making new III-N materials available in SNF

UV/blue/white light LED

III-N MOCVD Technology

• 53.8% street lighting, 93.8% projected by 2023²

2014 Nobel prize in Physics

Outline

Tools

- Aix-ccs MOCVD
- Hall Measurement
- Innotec & RTA
- SEM & IV
- XRD

Test Epi Structure

200 nm n-GaN (Si or Mg) 15 nm n-Al_{0.2}Ga_{0.8}N (Si) 1.5 um GaN 560 nm Al_{0.2}Ga_{0.8}N 345 nm Al_{0.5}Ga_{0.5}N 140 nm Al_{0.8}Ga_{0.2}N 210 nm AlN (111) Si

To calibration doping To calibration composition

Buffer layers

Substrate (standard clean)

List of Tasks

Outline

Experiment & Results - Summary

n-GaN Doping Calibration

- Doping with SiH₄ diluted with H₂
- n-doping depends mainly on the ratio of Si and Ga flow rates
 - Vary SiH₄ flow, measure mobility, resistivity and doping density

n-GaN Doping Calibration Results – SEM & IV

Smooth growth interface and expected thickness achieved

N-GaN

IV measurement indicates good conductivity

- Good contact quality
- RTA does not have significant effects

—— Pair 1, w/o RTA - - - Pair 1, w/ RTA

—— Pair 2, w/o RTA - - - Pair 2, w/ RTA

n-GaN Doping Calibration Results – Hall Measurement

N _{Si} :N _{Ga}	Mobility (cm2/Vs)	Resistivity (ohm*cm)	Carrier Densi (cm-3)	ity
2.00E-06	3.2E22	0.45	4.4	E16
1.00E-05	1.7E2	0.017	2.3	3E18
2.00E-05	1.9E2	0.014	2.4	E18
Growth Temp	Growth Time	Growth Pressu	ire SEM Thickn	ess
1295C	680 sec	200 mbar	352 nm	

Carrier density of ~1E18 cm⁻³ achieved.

 Most optoelectronic application requires 1E17~1E18 cm⁻³

Mobility measurement result indicates good material quality.

p-GaN Doping Calibration

- Doping with Cp2Mg (Bis(cyclopentadienyl)magnesium).
- Calibration very complicated: p-doping depends on multiple parameters:
 - ➤Mg and Ga flow rate ratio
 - ➤Growth temperature
 - Post growth annealing (Mg dopant activation) temperature & time
 - p-GaN metal contact is also difficult to make

Experiment Design – Parameter & Variables

- ➢Mg and Ga flow rate ratio
- Growth temperature
- Post growth annealing (Mg dopant activation) temperature & time
- p-GaN metal contact is also difficult to make

Extremely narrow growth window!!

Tokunaga, H., et al. "Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection." Journal of crystal growth 189 (1998):

p-GaN Doping Calibration Results – Parameter Matrix

p-GaN Doping Calibration Results - SEM

Smooth growth interface. Expected thickness achieved

p-GaN Doping Calibration Results - IV

Good Contact

Series1 — Series2

q.0003

The contact will be ohmic only if the carrier density is sufficiently high

- Carrier density measurement relies on good contact
- Very challenging to conduct Hall measurement
- Contact annealing is crucial

p-GaN Doping Calibration Results – Hall Measurement

N _{Mg} /N _{Ga}	Growth Temp. (C)	Annealing Temp. (C)	Thickness (nm)	Mobility (cm²/ Vs)	Resistivity (ohm*cm)	Doping Density (cm ⁻³)
0.0034	1295	750	425	10	1.28E+02	9.41E+14
0.0034	1295	1000	350	4.3	1.49E+03	1.01E+16
0.0068	1295	750	336	7.6	1.68E+03	4.76E+14
0.0034	1295	990	450	20	3.94E+01	7.73E+15
0.0034	1230	820	500	4.5	2.33E+02	6.00E+15
0.00918	1200	990	200	5.3	1.00E+00	1.25E+18
0.0017	1200	990	500	97	1.10E+01	5.34E+19

Red data are reasonable estimations.

p-GaN Doping Calibration Results – Hall Measurement

AlGaN Growth Verification

		Growth	Growth	Growth	
N _{AI} :N _{Ga}	NH3 Flow	Temp	Time	Pressure	Thickness
0.1043	6.70E+02	1295 C	180 sec	100 mbar	23 nm

InGaN Growth Verification

N _M :N _{Ca}	NH3 Flow	Growth Temp	Growth Time	Growth Pressure	Thickness	In %
1.42	4000	790C	2700 sec	400 mbar	250 nm	45
1.42	4000	850C	2700 sec	400 mbar	170 nm	36

790 C

850 C

InGaN Growth Verification - XRD

Other work

- p-GaN growing thickness investigated
- RTA process for p-GaN investigated
- Growth chamber baking & brushing requirement investigated
- Indium contact and Ti/Al/Au contact for n-GaN compared

Details will be included in the final report

Outline

Proposed Future Work

- Calibrate lower doping of p-GaN
- More InGaN and AlGaN calibration
- Try LED growth and fabrication

Main Contribution to SNF

n-GaN, p-GaN, AlGaN and InGaN growths are verified and calibrated

• Multiple new materials available at SNF!

Subsequent process investigated

- Metal contact recipe
- Metal annealing recipe

MOCVD capability tested, insights gained on MOCVD operation

• Valuable information for future Aix-ccs users

Acknowledgement

- Thanks to Xiaoqing for the mentorship, training on the MOCVD system and other help on the project
- Thanks to Prof. Howe, Dr. Mary Tang and other EE412 mentors for their valuable advice.
- Thanks to Prof. Harris for providing funding for SEM and other characterization tools.