Dry Etching of InSb Using OX-35 Etcher

Members: Settasit Chaikasetsin, Matthew Gutwald, Kate Lee Mentors: Usha Raghuram, Vijay Narasimhan, Jim McVittie, Seoung-Jai Bai

Outline

- MOTIVATION AND OBJECTIVES
- FABRICATION PROCESS / CHARACTERIZATION
- DESIGN OF EXPERIMENT
- CHARACTERIZATION
- RESULTS
 - CROSS-SECTIONAL SEM IMAGES
 - ETCH FLOOR ROUGHNESS
 - OVERALL EFFECTS
 - INTERACTION EFFECTS
- ISSUES / THINGS WE WISH WE HAD KNOWN BEFORE
- SUMMARY
- ACKNOWLEDGEMENT

Motivation and Objectives

- Obtain smooth anisotropic and vertical walls on InSb substrates with dry etching with appropriate recipe
- Find the corresponding fabrication and etching processes that work to achieve this goal.
- Explore the interaction effect among factors in OX-35 e.g. gas ratio, pressure, RF power
- Add value to the highly capable OX-35

Pusino et al., Microelectronic Engineering (2016)

Fabrication Process / Characterization

Characterization

- Quick check
 - Optical Microscope
 - Alphastep
 - S-neox
- Top-down SEM
- Cross-sectional SEM
- AFM

Tools used (10 total)

- Lithography: Yes oven, Hot plate, Headway, Heidelberg
- Deposition: CCP-DEP
- Dry Etcher: OX-RIE, Matrix, OX III-V
- Wetbench: Wbflexcorr, Wbmiscres

Cons

- 1. Assumed optimized point from literature (similar but different etchers)
- 2. Too many cases to study.
- 3. Better for fine tuning, future study.

Final DOE

• Full Factorial DOE with three two-level factors

CH4/H2 (sccm)	Ar (sccm)	Pressure (mTorr)	RF Bias Power (W)
13/32	20	20	200 (fixed)
13/32	20	10	200 (fixed)
5/40	20	20	200 (fixed)
5/40	20	10	200 (fixed)
13/32	5	20	200 (fixed)
13/32	5	10	200 (fixed)
5/40	5	20	200 (fixed)
5/40	5	10	200 (fixed)

Results

Results Cross-Sectional SEM Images

Results AFM Etch Floor Roughness – Preliminary and DOE Data

Effect of Pressure

 $\begin{array}{c} 3 \\ (E) \\$

Effect of Ar flow rate

Effect of CH4/H2

Results AFM Etch Floor Roughness – Best Roughness Case

CH4/H2	5/40
Ar (sccm)	5
P (mTorr)	10
RF Power (W)	200 (fixed)

Roughness

Rq trench (nm)	0.85
Rq top surface (nm)	2.70

Results *Overall effects without interaction terms (JMP)*

Vertical wall angle

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	81.175	2.659241	30.53	<.0001*		
CH4/H2(0.13,0.41)	0.05	2.659241	0.02	0.9859		
Ar(5,20)	-1	2.659241	-0.38	0.7260		
Pressure(10,20)	1.025	2.659241	0.39	0.7195		

Actual by Predicted Plot

Etch rate

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	66.7	2.162861	30.84	<.0001*	
CH4/H2(0.13,0.41)	2.525	2.162861	1.17	0.3079	
Ar(5,20)	-0.8	2.162861	-0.37	0.7302	
Pressure(10,20)	5.2	2.162861	2.40	0.0740	

Actual by Predicted Plot

Etch Rate Predicted P=0.2057 RSq=0.65 RMSE=6.1175

Response = f (intercept, CH4/H2, Ar, P)

Line Edge Roughness

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	51.2	3.148784	16.26	<.0001*	
CH4/H2(0.13,0.41)	3.1	3.148784	0.98	0.3806	
Ar(5,20)	-2.725	3.148784	-0.87	0.4356	
Pressure(10,20)	3.45	3.148784	1.10	0.3348	

Line Edge Roughness Predicted P=0.4884 RSq=0.42 RMSE=8.9061

Results Summary of overall effects

- AT CURRENT BOUNDARIES:
 - Pressure: 10 20 mTorr
 - Ar flow rate: 5 20 sccm
 - CH4/H2: 0.13 0.41
- MAXIMIZE VERTICAL WALL ANGLE:

• MINIMIZE LINE EDGE ROUGHNESS:

Results *Overall effects with interaction terms (JMP)*

Vertical wall angle

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	81.175	0.125	649.40	0.0010*	
CH4/H2(0.13,0.41)	0.05	0.125	0.40	0.7578	
Ar(5,20)	-1	0.125	-8.00	0.0792	
Pressure(10,20)	1.025	0.125	8.20	0.0773	
CH4/H2*Ar	2.075	0.125	16.60	0.0383*	
CH4/H2*Pressure	-2.75	0.125	-22.00	0.0289*	
Ar*Pressure	4.05	0.125	32.40	0.0196*	

Etch rate

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	66.7	3.525	18.92	0.0336*	
CH4/H2(0.13,0.41)	2.525	3.525	0.72	0.6043	
Ar(5,20)	-0.8	3.525	-0.23	0.8579	
Pressure(10,20)	5.2	3.525	1.48	0.3793	
CH4/H2*Ar	0.075	3.525	0.02	0.9865	
CH4/H2*Pressure	-0.175	3.525	-0.05	0.9684	
Ar*Pressure	2.5	3.525	0.71	0.6073	

Actual by Predicted Plot

Etch Rate Predicted P=0.7771 RSq=0.76 RMSE=9.9702

Response = f (intercept, CH4/H2, Ar, P, CH4/H2*Ar, CH4/H2*P, Ar*P)

Line Edge Roughness

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	51.2	2.225	23.01	0.0276*
CH4/H2(0.13,0.41)	3.1	2.225	1.39	0.3963
Ar(5,20)	-2.725	2.225	-1.22	0.4359
Pressure(10,20)	3.45	2.225	1.55	0.3647
CH4/H2*Ar	3.975	2.225	1.79	0.3249
CH4/H2*Pressure	-0.45	2.225	-0.20	0.8730
Ar*Pressure	4.325	2.225	1.94	0.3025

Actual by Predicted Plot

Line Edge Roughness Predicted P=0.48 RSq=0.93 RMSE=6.2933

Results Interaction effects

Effect of CH4/H2 on Vertical Wall Angle

- Look at the large change in response only.
- At 20 sccm Ar (blue), only at low pressure (10 mTorr) that
 Angle as CH4/H2
- At 5 sccm Ar (orange), only at high pressure (20 mTorr) that
 Angle A as CH4/H2

Issues / Things we wish we had known before

- "Grass" roughness Issue
 - > Pieces of the hardmask remaining due to lack of hardmask overetch
- Top surface roughness
 - Caused by thin hardmask being etched through during InSb etching
- Use of oil in hardmask etching (OX-RIE)
 - More oil results in better etch of hardmask, more uniform temperature distribution at the back contact
- Line Edge Roughness (LER)
 - > Could be caused by our etching conditions (RF power)
 - Could also be from polymer being deposited onto sidewalls
 - > (Ongoing)

Summary

- Most vertical wall angle: 86.5 degrees
 - > 13/32 sccm CH4/H2 Ratio, 5 sccm Ar flow rate, 10 mTorr chamber pressure
- Best surface roughness: 0.85nm
 - > 5/40 sccm CH4/H2 Ratio, 5 sccm Ar flow rate, 10 mTorr chamber pressure
- To maximize vertical wall angle:
 - > Increase pressure, decrease Ar flow
- To minimize line edge roughness:
 - Decrease pressure and CH4/H2 ratio, increase Ar flow

Most vertical wall angle 13/32/5sccm (CH4/H2/Ar) flow rate, 10 mTorr

Best Surface Roughness 5/40/5sccm (CH4/H2/Ar) flow rate, 10 mTorr

Acknowledgement

We would like to acknowledge our SNF mentors, Usha and Jim, and our external mentors, Vijay and Seoung-Jai, and the E241 teaching team. We would also like to acknowledge the hardworking SNF staff. Thank you for all your help this quarter!

Q & A

