Standard Operating Procedure of Optomec Aerosol Jet Printer in Pneumatic Atomizer Mode and Characterization of Printed PEDOT:PSS Lines

Kye Young Lee, Camila Cendra, Theo Gao

Outline

1. Introduction: drop-on-demand printing techniques

- 1. Working principles of aerosol jet printing
- 2. Examples/applications of aerosol jet printing
- 3. Comparison: aerosol jet vs. inkjet

2. Standard operating procedure (SOP) of Optomec

- 1. Assembly and initialization
- 2. Troubleshooting
- 3. Disassembly and cleaning

3. Aerosol jet printing - start atomizing!

- 1. Optimizing print patterns
- 2. Printing example: lines of PEDOT:PSS

4. Conclusion

1. Introduction: Drop-on-Demand Printing Techniques

1.1 Working principles of aerosol jet printing

1.2 Examples/applications of aerosol jet printing

ACS Appl. Mater. Interfaces 2013, 5, 4856–4864 Adv. Electron. Mater. 2017, 3, 1700057

Optomec Inc.

Damle et al., unpublished work

Flexible silver patterns

All-printed CNT transistor arrays

40

Conformal printing

CeO₂ micropillars

1.3 Comparison: aerosol jet vs. ink jet printing

Aerosol jet

- Compatible with a wide range of ink rheologies (1-5000 cP)
- Can pattern large areas, as well as on uneven surfaces
- Utilizes more material
- Less prone to clogging
- Suitable for single-material deposition

Inkjet

- Limited to low viscosity inks (<5 cP)
- Limited to small areas and flat surfaces
- Less wasteful of material
- Prone to clogging
- Easier to do multimaterial printing

Dimatix Printer 2800 Series

2. Standard Operating Procedure of Optomec in Pneumatic Mode

2.1 Assembly and initialization

Virtual impactor assembly

Pneumatic atomizer stem assembly

Printhead assembly for fine feature nozzle

Atomization of PEDOT:PSS ink when atomizer flow is on

A tube connects the virtual impactor with the printhead

Adjusting deposition head (nozzle tip) and shutter height using glass slides

2.2 Troubleshooting

1. Software issues -- not starting or freezing, not executing the uploaded toolpath file, not measuring applied gas flow values

→ Close/restart KEWA, restart computer, set all gas flows to zero in proper order
2. Unusual gas flow values (leakage or clogging)

- → Check for leaks in tubing, printhead, virtual impactor & atomizer (in that order)
- \rightarrow Clean or replace parts as needed
- 3. Bad jetting behavior
 - \rightarrow Adjust "push" (Δ of exhaust & atomizer flow)
 - \rightarrow Adjust height of atomizer in the jar
 - \rightarrow Dilute ink to reduce viscosity

2.2 Troubleshooting

1. Software issues -- not starting or freezing, not executing the uploaded toolpath file, not measuring applied gas flow values

→ Close/restart KEWA, restart computer, set all gas flows to zero in proper order 2. Unusual gas flow values (leakage or clogging)

- \rightarrow Check for leaks in tubing, printhead, virtual impactor & atomizer (in that order)
- \rightarrow Clean or replace parts as needed
- 3. Bad jetting behavior
 - \rightarrow Adjust "push" (Δ of exhaust & atomizer flow)
 - \rightarrow Adjust height of atomizer in the jar
 - \rightarrow Dilute ink to reduce viscosity

2.3 Disassembly and cleaning

After printing, the Optomec must be promptly disassembled and cleaned

- 1. Turn off the three gas flows in the following order: **atomizer** \rightarrow **wait** 10s \rightarrow **exhaust** \rightarrow **wait** 60s \rightarrow **sheath**
- 1. Remove pneumatic atomizer, virtual impactor, printhead \rightarrow disassemble
- 2. Disassemble the printhead-shutter subassembly
- 3. Dispose of tubing
- 4. Clean up the work stage

Cleaning procedure

Cleaning solution	Non-critical parts	Critical parts	Critical parts (no Branson)
1) Water	$10\min \times 2$ times	$10\min \times 2$ times	20min × 3 times
			(or $10\min \times 5 \text{ times})^*$
2) Branson	$10\min \times 2$ times	$10\min \times 3$ times	
3) Isopropyl alcohol	$10\min \times 2$ times	$10\min \times 3$ times	$10 \min \times 3 $ times
() Dinge with isomeonyl clock of and blow day with N gun			

4) Rinse with isopropyl alcohol and blow dry with N₂ gun

Thorough cleaning is the most critical step in Optomec SOP!

3. Aerosol Jet Printing: Start Atomizing!

3.1 Optimizing print patterns

3.1 Optimizing print patterns

3.2 Printing PEDOT:PSS

4-point probe conductivity: 14.12 ± 10 S/cm

In literature: 14.82 S/cm

4. Conclusion

4. Conclusion

Summary

Drop-on-demand printing techniques: aerosol jet vs. ink jet

Standard operating procedure of Optomec in pneumatic mode

Optimizing print patterns and characterization of PEDOT:PSS lines

Suggestions for future users

Expand allowed solvents for Optomec to include common organic solvents

> Purchase a new atomizer lid-jar

Develop leak detecting protocol to streamline the troubleshooting process

Thank you:

Hye Ryoung Lee, Swaroop Kommera, Randall Stoltenberg, Antonio Ricco, Donald Gardner

Any Questions?

