EE412 Final Presentation

Deep oxide etch in Pt-Ox to replace dicing & polishing process

Alexander Piggott Mentor: Usha Raghuram 2015-06-05

Rationale

The current dicing and polishing process is not ideal:

- Damage to waveguide facets: unrepeatable measurements
- Dirty process
- Long turnaround time

Goal: replace the dicing and polishing process with an etch-based process

Process Overview

The basic process is as follows:

- Pattern mask
- 2 Pt-Ox etch: 0.22 μm Si device layer
- **③ Pt-Ox** etch: $3 \ \mu m \ SiO_2$ buried oxide layer
- Pt-DSE etch: 100 μm Si bulk
- Output to the second second
- Remove mask

The main challenge is etching through the thick ${\rm SiO}_2$ layer, with the following restrictions:

- Silicon photonic device layer must be fully protected
- Optical-quality vertical sidewalls
- Mask needs to be selective against both silicon and oxide
- Mask needs to be fully removable at end of process
- If photoresist is used, it needs to survive the etch without reticulation (burning)

Unfortunately, there is no existing process that meets these requirements!

The proposed process is,

- **③** Spin and pattern photoresist (4 μm of SPR220-7)
- **②** Etch silicon device layer (0.22 μm) **②** Lampoly
- Sector buried oxide layer (3 μm) Pt-Ox
- DRIE into silicon bulk (100 μm) @ Pt-DSE
- Strip mask

The Pt-Ox etch requires significant process development.

Starting Stack:

- **1**.6 μm SPR3612, exposed at ASML
- 2 1.0 μm thermal oxide

Starting Recipe:

- \bullet 7 $\mathrm{mT},$ 1400 W ICP, 150 W RF
- $\bullet~{\rm C_4F_8}$ 20 sccm, ${\rm CHF_3}$ 30 sccm, Ar 10 sccm
- $\bullet~10^\circ~{\rm C}$ bottom electrode, $150^\circ~{\rm C}$ spool & lid, $70^\circ~{\rm C}$ liner

Parameters: RF power, ICP power, C_4F_8/CHF_3 ratio

Metrics: Selectivity, (average) sidewall angle

ID	Power (W)		Flow Rates (sccm)		Etch Rates (A/s)		Selectivity	Sidewall (°)
	RF	ÍCP	$\mathrm{C_4F_8}$	CHF_3	Oxide	PR		~ /
1	105	1100	17	33	59.10	32.47	1.82	71.49 ± 0.00
2	60	800	10	40	28.47	14.40	1.98	58.83 ± 1.55
3	60	800	20	30	24.15	12.73	1.90	52.57 ± 4.81
4	60	1400	10	40	42.93	18.20	2.36	$\textbf{76.29} \pm \textbf{2.18}$
5	60	1400	20	30	41.05	19.27	2.13	71.89 ± 1.01
6	150	800	10	40	60.80	36.32	1.67	74.58 ± 1.11
7	150	800	20	30	54.98	32.67	1.68	72.78 ± 0.36
8	150	1400	10	40	91.97	51.00	1.80	80.88 ± 0.40
9	150	1400	20	30	90.50	52.08	1.74	75.13 ± 0.54
10	105	1100	17	33	60.70	34.28	1.77	73.64 ± 1.10

The etch rates are a linear function of the ICP - RF bias power product.

Plan A: Selectivity

The selectivity does not change by more than $\pm 20\%$, and is weakly negatively correlated with the sidewall angle. We thus focused on optimizing the sidewall angle.

Plan A: Sidewall angles

Here, we show the shallowest and steepest sidewall profiles obtained in the DOE.

ID: 8

ID: 3

Plan A: Double-step sidewall profile

This curious double-step profile appears in some of the etch conditions. It is not exactly clear what is going on - perhaps a transition between etching regimes partway through the etch?

The sidewall angle is a monotonically increasing, nonlinear function of the ICP - RF bias power product. Using a $\rm CHF_3$: $\rm C_4F_8$ ratio of 40:10 uniformly resulted in the best sidewall angle.

Plan A: Optimal recipe

The optimal etch recipe (etch condition 8 in the DOE) is,

Para	Value(s)			
Gas Flow	CHF_3	40	sccm	
	$\mathrm{C_4F_8}$	10	sccm	
	Ar	5	sccm	
Power	ICP	150	W	
	RF bias	1400	W	
Pressure		7	mTorr	
Temperature	Electrode	10	$^{\circ}\mathrm{C}$	
	Spool	150	$^{\circ}\mathrm{C}$	
	Lid	150	$^{\circ}\mathrm{C}$	
Backside He	Pressure	4000	mTorr	
Etch Rates	Thermal oxide	5518	Å/min	
	SPR3612 resist	3060	\dot{A}/min	
Selectivity		1.80		
Sidewall Angle		80.88 ± 0.40 $^\circ$		

The process exploits the wet etch selectivity between thermal oxide and HDPCVD oxide. The process is,

- Grow HDPCVD oxide (1.6 μm)
- 2 Spin and pattern photoresist (1 μm of 3612)
- ${f 0}$ Deposit chrome (0.1 $m \mu m$) ${f 0}$ IntlVac, and then liftoff
- Etch HDPCVD oxide (1.6 μ m) @ Pt-Ox
- Section 2 Etch silicon device layer (0.22 μm) @ Pt-Ox
- Etch buried oxide layer (1.0 μm) @ Pt-Ox
- Remove chrome using chrome wet etch
- **③** DRIE into silicon bulk (100 μm) **@** Pt-DSE
- Strip HDPCVD oxide using 50:1 HF

All etches here have already been optimized: an excellent shortcut!

Plan B: HDPCVD etch rate

Measured selectivity of > 200: 1 against thermal oxide, allowing HDPCVD oxide to be stripped without significantly affecting the BOX layer in SOI.

Important: Must constantly agitate chip to maximize HDPCVD oxide etch rate.

Starting Stack:

- $\textcircled{0} 3.0 \ \mu m \ \text{thermal oxide}$
- Silicon wafer

The surrogate test wafer did not include a silicon device layer, as the device layer etch was considered to be the easiest part of the process.

Plan B: Post Pt-Ox etch

Pt-Ox Recipe: provided by Noureddine Tayebi

- \bullet 7 $\mathrm{mT},$ 1500 W ICP, 80 W RF
- $\bullet~{\rm C_4F_8}$ 80 sccm, Ar 30 sccm, O_2 10 sccm
- $\bullet~40^\circ~{\rm C}$ bottom electrode, $150^\circ~{\rm C}$ spool & lid, $70^\circ~{\rm C}$ liner

Pt-Ox mask: Cr

Plan B: Post DSE

DSE Recipe: DSE_FAT @ Pt-DSE **DSE mask**: Cr and HDPCVD oxide (not removed in SEM)

- Excellent results (vertical oxide sidewall profile, line-edge roughness, good DSE profile) for fiber-coupling.
- No damage to thermal oxide sidewalls from DSE etch.

Plan A : photoresist process

- Performed 9-sample DOE to optimize Pt-Ox etch
- Achieved a sidewall angle of 80.88 \pm 0.40 $^\circ,$ oxide etch rate of 5518 $\dot{A}/min,$ and oxide to PR selectivity of 1.80.

Plan B : chrome hard-mask process

- Measured extremely high selectivity (> 200 : 1) of HDPCVD oxide against thermal oxide in 50:1 HF
- Achieved excellent results on first run.