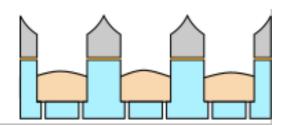

## μTissue Dicer


## Fall Quarter Final Presentation

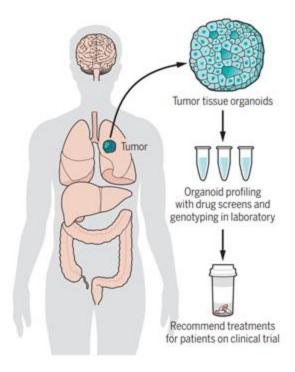
Nicolas Castaño Seth Cordts Sai Koppaka

Mentors:
Usha Raghuram
Tony Ricco
Mark Zdeblick



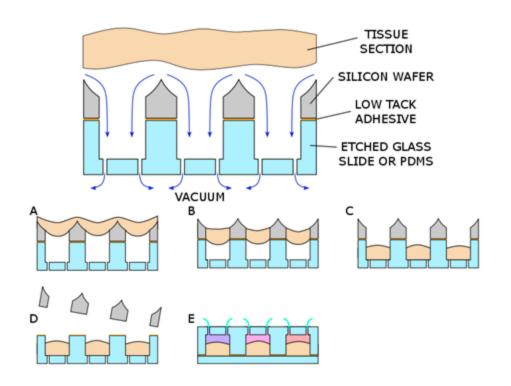





### **Motivation**

- No current methods for generating high-throughput, uniform fragments of organoids that reflect spatial heterogeneity of original cancer tissue
- Our device will be critical to study organoid fragments that preserve tumor microenvironments (TME) and resident immune cells
- Improve throughput of multiplexed drug screening to support personalized cancer immunotherapy treatments

#### For the SNF:

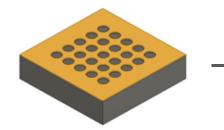

- Expanding operational and functional utility of PT-DSE for non-conventional silicon etching
- Optimizing SOP for large feature etching (i.e. deep and wide)



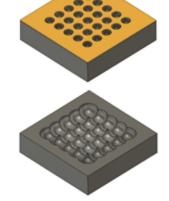


**Top**: multiplexed cancer drug screening microfluidic assay based on culturing cancer cells (not organoids) (Zhang et al., *Small*, 2018). **Left:** target etch features represent fabricated by unique plasma etching recipes

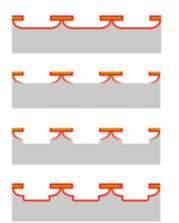
## Concept

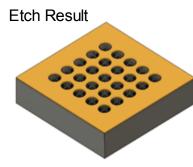



Cross-sectional schematic


- (A-C) Extrude tissue through etched silicon blade into microwells
  - (D) Remove blade array
- (E) Interface with microfluidic network for individually addressable wells

## **Fabrication Method**


**Step 1:** Pattern photoresist mask on Si wafer using Heidelberg





**Step 2**: Pseudo-isotropic etch with PT-DSE to create blades.

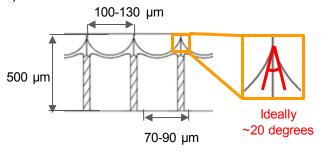


**Step 3:** DRIE etch vertical trenches down to ~50 µm using Bosch process.

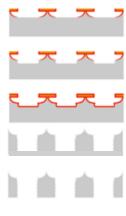




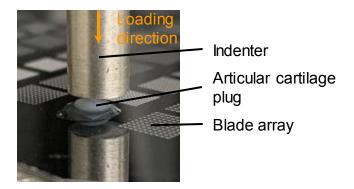



**Step 4:** KOH etch backside to expose through-holes

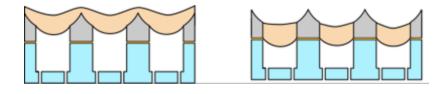



**Etch Result** 

## **Objectives**


**Objective 1**: Optimize etch recipe for blade angle by tuning gas ratio to develop profile that is not crystal plane dependant (pseudo-isotropic).



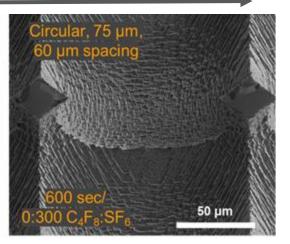

Objective 3: Etch through-holes in wafer and strengthen cutting surface by passivation with platinum.



Objective 2: Test etched devices against tissue phantom with compression test to validate cutting ability.



**Objective 4:** Couple with extruding force to draw tissue through the device into collection microwells.

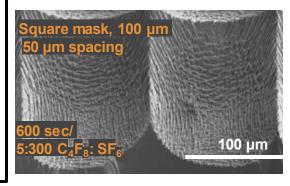



## Results (towards blade array etching)

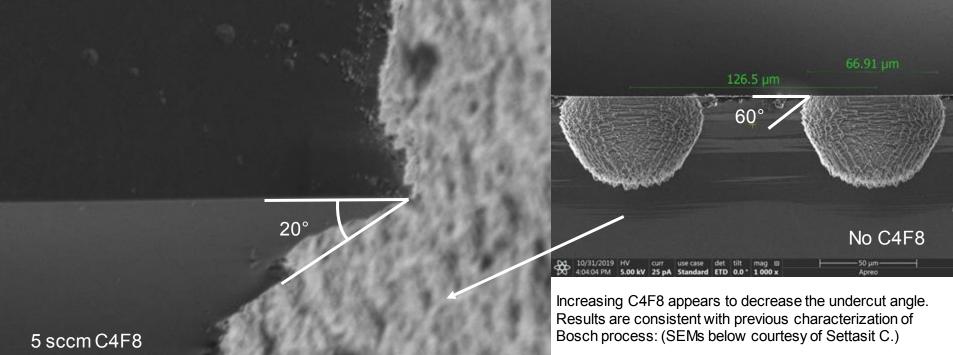
Square mask, 75 µm,

Increasing SF<sub>6</sub> Time

60 µm spacing cycling.




Bosh Process: Plasma etching with SF<sub>6</sub> and C<sub>4</sub>F<sub>8</sub>. No passivation or


#### Parameters:

- 1) Ratio of C<sub>4</sub>F<sub>8</sub>: SF<sub>6</sub> determines the blade angle
- 2) Time SF<sub>6</sub> added determines depth of isotropic etching

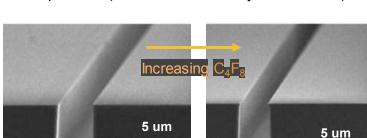
Photoresist Selectivity: ~250: 1



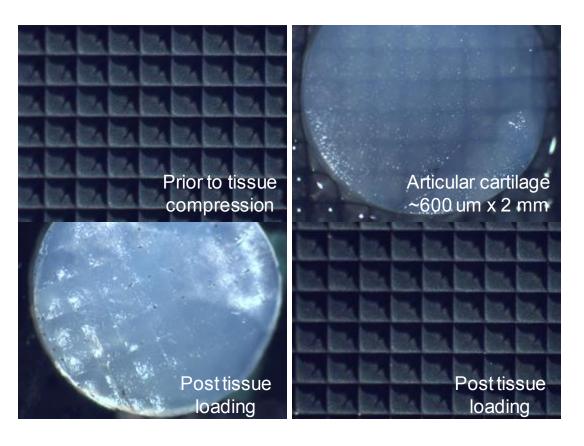
Increasing C<sub>4</sub>F<sub>8</sub> in process module

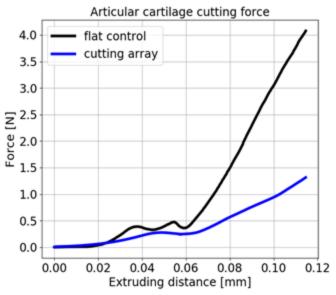


Jagged edges are a result of fluoropolymer formation (fluorine radicals + photoresist polymer). We will further characterize the undercut angle and blade sharpness in the next quarter with an oxide mask.


13.8 um

4.2 mm

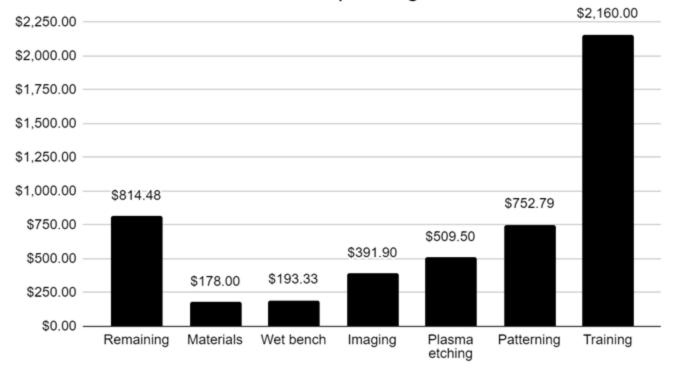

86 pA


2.00 kV

11/10/2019 mode



## Results (preliminary mechanical testing)



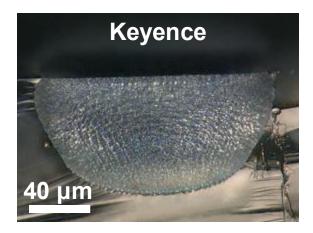


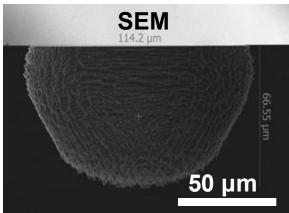

- Loaded at 0.02 mm/s in buffer
- Evidence of cutting seen in flatter loading profile on cut sample, i.e. plateauing force is indicative of slipping or cutting in this case.

## **Budget**

#### Fall Quarter E241 Spending Breakdown




- Wetbench:
  - Wbflexcorr
- Imaging:
  - SEM (thank you David!)
  - Keyence
- Plasma etching:
  - o PT-DSE
  - Oxford-RIE
  - Matrix
- Patterning:
  - o CCP-dep
  - o YES oven
  - SVG coater/developer
  - Heidelberg
- Training:
  - General safety
  - All-litho
  - Heidelberg
  - Keyence
  - SVG coater/developer
  - Thermco4
  - Matrix
  - Apreo SEM
  - Oxford-RIE
  - Wbflexcorr


## Winter Quarter Goals

- 1. Complete Objective 1: Perform pseudo-isotropic etches to form cutting edge using oxide masked silicon wafers instead of photoresist.
  - a. Characterize how C<sub>4</sub>F<sub>8</sub>: SF<sub>6</sub> ratio and time affect etch profile in silicon
- 1. Objective 3: Etch through-holes and determine effectiveness of single mask method for etching device and adjust process as needed.
- 1. Objective 2/4: Pair device with microwell plate (fabricated in PDMS) and test the effectiveness of using a vacuum dessicator or other force to extrude tissue into compartments.

# Thank you! Questions?

## Insights: Keyence for profile imaging (Supplementing SEM)





 Keyence digital microscope images of cleaved wafers offer a rapid, cheap alternative to SEM for first pass imaging.

## Ox-RIE: Etching oxide using PR as a mask

Recipe:

Start Pump Step: Pump 5e-5

Etch Step: 30 Ar/ 15 CHF3/ 45 CF4/ 100 mT/ 500W/ 20C/ 10T He (5 min etch) \*\*adapted from K.L/ Y.C 2016

End Pump Step: Pump 7e-5

- Patterned oxide wafer#1: SCS wafer with 1 um thermal oxide, patterned with 1.6 um 3612 photoresist and resolution mask pattern
  - Measured film thickness with the NanoSpec. Focused/measured in four distinct spots on wafer
  - PR pre-etch thickness: 15,975Å. PR post-etch thickness: 10,283Å.
    - PR Etch rate: 1138 Å / min (\*higher than average etch rate reported from K.L/Y.C: note procedure differences )
  - Oxide pre-etch thickness: ~10,000 Å. Oxide post-thickness: Etched all the way (< 100 Å).
- Patterned oxide wafer#2: SCS wafer with 1um thermal oxide, patterned with 1.0 um 3612 photoresist
  - Measured film thickness with the NanoSpec.
  - o PR post-etch thickness: 142 Å (reported by positive resist on oxide option)
    - Question: Which NanoSpec option is most accurate post-etch?
  - Oxide pre-etch thickness: ~10,000 Å. Oxide post-thickness: Etched all the way (< 100 Å).</li>

|                                   | TOTAL    | 200 70     | REMAINING |        |       |
|-----------------------------------|----------|------------|-----------|--------|-------|
| 4003.47                           | EXPENSES | 996.53     | BUDGET    |        |       |
|                                   |          |            |           |        |       |
| Training                          | Quantity | # Trainees | Cost      | Total  |       |
| General Safety                    | 1        | 2          | 80        | \$160  |       |
| All-Litho                         | 2        | 3          | 80        | \$480  |       |
| PTDSE                             | 1.5      | 3          | 80        | \$360  |       |
| Heidelberg                        | 2        | 1          | 80        | \$160  |       |
| Keyence Digitial                  | 1        | 2          | 80        | \$160  |       |
| SVG Coater/<br>Developer          | 1        | 3          | 40        | \$120  |       |
| Thermco4                          | 0.5      | 1          | 40        | \$20   |       |
| Matrix                            | 0        | 1          | 0         | \$0    |       |
| SEM +<br>Wetbench+                |          |            |           |        |       |
| Oxford RIE                        |          |            |           | \$1220 |       |
|                                   |          |            |           | \$2680 | TOTAL |
| Materials                         |          |            |           |        |       |
| Clean Room<br>Notebook            | 1        |            | 8         | \$8    |       |
| Wafer - C-test<br>(100 mm)        | 6        |            | 17        | \$102  |       |
| Cassette<br>(storage) - 100<br>mm | 1        |            | 17        | \$17   |       |
|                                   |          |            |           |        |       |

| Toolusage  | Amount | Cost    | Date   |
|------------|--------|---------|--------|
| Heidelberg | 67     | \$39.08 | 10/23  |
| SVG coater | 88     | \$73.33 | 10/23  |
| SVG dev    | 13     | \$10.83 | 10/23  |
| Yes oven   | 34     | \$28.33 | 10/23  |
| SEM        | 60     | \$75    | 10/26  |
| PTDSE      | 277    | \$230   | 10/25  |
| Yes oven   | 27     | \$22.5  | 10/27  |
| SVG coater | 16     | \$13.33 | 10/28  |
| SVG dev    | 20     | \$16.67 | 10/28  |
| Heidelberg | 51     | \$29.75 | 10/28  |
| Keyence    | 118    | \$68.83 | 10/28  |
| Keyence    | 63     | 36.75   | 10/29  |
| Yes oven   | 24     | 20      | 10/31  |
| SVG coater | 14     | 11.67   | 10/31  |
| SVG dev    | 15     | 12.5    | 10/31  |
| Heidelberg | 55     | 32.08   | 11/1   |
| Keyence    | 74     | 43.17   | 11/3   |
| SEM        | 45     | 56.25   | 11/3   |
| PTDSE      | 93     | 77.5    | 11/3   |
| Matrix     | 13     | 10.83   | 11/3** |
| Keyence    | 56     | 32.67   | 11/12  |

Spreadsheet with additional tool usage documented. Budgeton this slide <u>is</u> up to date: https://docs. google.com /spreadshe ets/d/19MM aB ddmSi4 7bU34iJaht <u>U5mj3nu56</u> hdJqn2093 RMU/edit#g <u>id=0</u>

1145.47.8 TOTAL