Optimizing the Electrical Stability of Platinum Films Deposited in Lesker-Sputter

Kirsten Kaplan, Karen Kim, Martin Winterkorn

December 7, 2016

Motivation: Thermal Accelerometar

FiguratrationagethadtaiThesmallageelerometer

- Acceleration causes bubble to move i.e. asymmetry in temperature distribution
- Measurable ΔT between thermistors at equal distance from heater
- No movable parts
- Logarithmic sensitivity scaling

STANFORD UNIVERSITY

Temperature

Thermal Accelerometer Requirements

- Must be able to sense very small (<0.001 °C) temperature differences
- TCR = $\frac{1}{\rho} \frac{d\rho}{dT}$ [ppm/°C] Resistance Stability = $\frac{\Delta\rho}{\rho}$ [ppm]
- Figure of Merit:
- Resistance Stability / TCR [°C]
- reissen's Rule: $\rho = \rho_l(I) + \rho_d$ fined Figure of Merit: $\Delta \rho \quad [\mu \Omega \cdot cm]$ $STANFORP_{UNIVERSITY} d\rho_l = const$ • Mattheissen's Rule: $\rho = \rho_l(T) + \rho_d$ ts Agency

Metrics for this project

Metric	Phase 1	Phase 2	Phase 3
ALD Resistance and TCR Stability	0.1% over 1 month, 100 cycles -40 to +80	50ppm over 1 month, 1K cycles -40 to +80	5ppm over 1 month, 10K cycles -40 to +80
Bias Stability	1000 μg @1S	100 µg @1S	30 µg @1S
Bias Stability	1000 μg @1000S	100 µg @1000S	10 μg @1000S
Scale Factor Repeatability	100 ppm	10 ppm	1 ppm
Bandwidth	100 Hz	1kHz	5kHz
Resolution (@1S)	1000 μg	100µg	10µg

Engr. 241 Autumn 241

Stanford University

ExFab

Why Sputtering?

Pt Bulk Resistivity: 10.4 uOhm*cm

Resistivity from Standard Recipe Deposition:

ALD	e-beam Evaporation	Sputtering
14 uOhm*cm	17 uOhm*cm	20 uOhm*cm

Tunable Process Parameters:

ALD	e-beam Evaporation	Sputtering	
Temperature [C]	Beam Current [mA]	Power [W]	
Exposure Mode?	Sweep Speed?	Pressure [mTorr]	
		Temperature [C]	🛑 Only in
		Substrate Bias [V]	🛑 Lesker
		DC vs. RF Power	🛑 Sputter!
			ExFab

Stanford University

Experimental Approach – DOE

Number	DC/RF	Power	Pressure	Temperature	Substrate Bias	Number	DC/RF	Power	Pressure	Temperature	Substrate Bias
1	DC	-	-	-	-	7	RF	-	-	-	-
2	DC	-	-	+	+	8	RF	-	+	-	+
3	DC	-	+	+	+	9	RF	-	+	+	-
4	DC	+	-	+	-	10	RF	+	-	-	+
5	DC	+	+	-	-	11	RF	+	-	+	+
6	DC	+	+	-	+	12	RF	+	+	+	-

Low / high values:

- Power
 Low: 70W DC, 40W RF
 High: 4x Low
- Pressure Low: 2 mT High: 30 mT
- Temperature
 Low: no heating
 High: 270 C
- Substrate Bias
 Low: 0 W
 High: 40 W (~125 V)
- 1) For each parameter set, do test deposition to determine growth rate
- 2) Using that rate, aim for 30 nm thickness on oxidized Si wafer

ExFab Stanford University

Experimental Results

Number	DC/RF	Power	Pressure	Temperature	Substrate Bias	թ [µΩ*cm]	Δρ [μΩ*cm] (RMS)	Number	DC/RF	Power	Pressure	Temperature	Substrate Bias	թ [µΩ*cm]	Δρ [μΩ*cm] (RMS)
1	DC	-	-	-	-	19.6	2.3E-04	7	RF	-	-	-	-	15.3	4.7E-04
2	DC	-	-	+	+	13.8	6.3E-04	8	RF	-	+	-	+	/	/
3	DC	-	+	+	+	14.5	6.8E-04	9	RF	-	+	+	-	13.1	5.7E-04
4	DC	+	-	+	-	15.6	1.5E-04	10	RF	+	-	-	+	15.9	7.6E-04
5	DC	+	+	-	-	94.1	2.9E-04	11	RF	+	-	+	+	14.7	5.3E-04
6	DC	+	+	-	+	41.6	1.7E-03	12	RF	+	+	+	-	12.1	4.2E-04

Bulk Platinum (Literature Value): Best ALD Film: Evaporated Film (intlvac_evap, 100 nm):

10.4 μΩ*cm 14.1 μΩ*cm 2.0E-04 μΩ*cm RMS 17.1 μΩ*cm

Engr. 241 Autumn 241

Experimental Results – Statistical Analysis

- Temperature most important parameter for resistivity, then power type – higher temperature and RF are better
- DC: lower power, lower pressure, higher bias better
- RF: higher power, higher pressure, lower bias better

Engr. 241 Autumn 241

Experimental Results – Stability Plots

- Lithographically patterned Pt beams, 0.5-10 um x 1000-8080 um
- 4-wire probed
- Resistance measurement ~ 1x per second for 30 min

ExFab Stanford University

Engr. 241 Autumn 241

Future Work

Electrical Testing

- Longer term resistivity stability measurements, with aggressive burn-in phase
- Analyze impact of thermistor dimensions
- Full TCR characterization

Morphology Characterization

- Redeposition of select recipes on (111) Si to enable XRD crystallinity analysis
- AFM characterization of film roughness

Further Recipe Development

- Iterate around best parameter set try different temperatures and biases
- Test best condition on sapphire wafer 0.6% lattice mismatch with (111) Pt

Process Integration

 Can substitute deposition method in Thermal Accelerometer Fabrication Process, but need to test adhesion – ALD probably better

Part 2: Lessons Learned Process and Characterization Debugging

Lesker Sputter

Recipe Writing

- Existing Recipes can do Deposition, Heating and Biasing, but not at the same time, and they usually fail at plasma striking
- Manually activating heater or bias while running regular deposition recipe NOT advised will likely trigger interlocks and cause trouble if aborted
- Developed our own "E241 Ultimate Master Recipe" that can do everything

Substrate Heating

- Max. 800 C, but even at 600 C awful base pressure (9E-8 -> 3E-5 Torr) resulting in oxidized film: 15% O in XPS after etching
- At 400 C, no oxidation but will form PtSi on Si substrate
- PID gains are way off

Substrate Biasing

 Plasma flickers due to brushes losing contact when substrate holder rotates during deposition -> workaround by lowering stage 2-3 turns

Engr. 241 Autumn 241

Platinum Etching

Ion Milling

- Standard Recipe in mrc Etch Rate: 8.3 nm/min
- Redeposition on resist sidewalls
- Poor selectivity and damage to underlying layer
- Works, even for small (500 nm) features

Dilute Aqua Regia

- 3:1:2 mixture of HCl:HNO₃:H₂O
- Self-heats to 34 C
- Literature Etch Rate: 3.5 nm/min
- Excellent selectivity towards SiO₂
- Does not etch Pt
- ... unless pre-treating surface with Ar plasma or 50:1 HF dip
- Doesn't work for small (5 um) features due to excessive undercut

Version: SN:350052013

s-neox Step Height

• 25% Variation for thin (~30 nm) films!

Engr. 241 Autumn 241

Thickness Measurement on Thin Metal Films

s-neox	alphastep	AFM	XRR	Filmetrics	woollam
+ fast, cheap	+ fast, cheap	- slow	- slow, pricey	+ fast, cheap	+ fast
+ non-contact	- sample contact	- sample contact	+ non-contact	+ non-contact	+ non-contact
- low temp only, needs Kapton tape	- low temp only, needs Kapton tape	- low temp only, needs Kapton tape	+ high temp possible, no Kapton tape	+ high temp possible, no Kapton tape	+ high temp possible, no Kapton tape
- unreliable below 100 nm	- unreliable below 30 nm	- always unreliable	- unreliable below 5 and above 100 nm	- fails above 12 nm	- fails above 12 nm
			 affected by roughness 		+ higher accuracy vs. Filmetrics
			best in most cases		best below 10 nm
	- 244			Stanfo	rd University

Engr. 241 Autumn 241

X-Ray Reflectivity (XRR)

- Can be used to determine the density, thickness, and roughness of film ۲
- Limitations: ۲
 - 1. Roughness of the film
 - 2. Fails to Fit or Inaccurate for Films thinner than ~3 nm
 - 3. Unreliable Density Fitting usually best to fix at bulk value

X-Ray Diffraction (XRD)

- Non-symmetric Scan (Glazing Incident Scan / 2-theta)
 - Gives information about the crystallinity of Pt film
 - Does not give meaningful data FWHM / peak height data

O_{Me}ga axis

omega

Mono-

theta

X-Ray Diffraction (XRD)

- Symmetric Scan (Theta-2Theta measurement)
 - Provides meaningful data (e.g. grain size, texture)
 - Si (400) overlaps with Pt (111)

X-ray Diffraction (XRD)

Use Si(111) !

Electrical Measurements

Room-Temperature Resistivity

- cascade
 - IV measurement with Keithley 4200 on 4-wire structures
 - Errors from wider Pt beams by Litho and redeposition
- prometrix
 - 4-probe testing on unpatterned film
 - Very consistent average StdDev 0.5%
- cascade and prometrix within 1%

Temperature-Controlled Setup

- Wirebonding can successfully bond to 30 nm sputtered Platinum
- Stability tests:
 - Devices stabilized in oven at 30 °C
 - Resistance measured ~ every 1 sec for 30 min
- TCR measurements:
 - Stabilize oven at temperatures from 10 °C to 50 °C
 - Measure resistance at each temperature
 - Fairly time consuming because of oven stabilization time

Stanford University

Acknowledgements

- J Provine, Shiva Bhaskaran
- Carsen Kline, Maurice Stevens
- Roger Howe, Caitlin Chapin
- E241 Class

Thank You.

