Direct Patterning of Proteins with the Alvéole PRIMO

Erica Castillo & Joy Franco, PhD Candidates, Mechanical Engineering Swaroop Kommera, SNF Mentor Gaspard Pardon & Leeya Engel, Post-doctoral Mentors

E241 | 5 DEC 2017

A simple, close look into a cell's environment...

Cells adhere/bind to proteins in the extracellular matrix (ECM).

Sell, S. A., et al. Polymers 2(4), 522-553 (2010)

Why pattern protein? - Controlled cellular microenvironment

Def. protein patterning - "Protein immobilization within specific locations in a 2D or 3D space" (Blawas 1998)

Cellular morphology

Mechanical Output

Lehnert et al., J. Cell Science 2004

Grevasse et al., Scientific Reports 2015

Ribeiro et al., PNAS 2015

A new approach to μ -patterning protein: Alvéole PRIMO

Characterizing ease of use // making μ -patterning accessible to all

	Protein Substrate Matrix	Glass		TEM Carbon Grids	
	Peanut Lectin (Fluo)		Study neurons Integration of new protein Resolution Study	0 0 0	Study protein structure Integration of new substrate Feasibility
	ELP-RGD (Fluo)	0 0 0	Engineered protein Integration of new protein Feasibility	X	

Project objectives

Image Analysis - Overview

Software: ImageJ Matlab Scripts

<u>Parameter</u>	Analysis Output	Ideal Trend Desired	
Area Uniformity	Standard deviation	Minimize STDEV Less spread	
Resolution	SNR = Imax/Inoise	Maximize SNR obtain smallest resolution	
Line Width Consistency	Standard deviation	Minimize STDEV Less spread	

Laser power and duration do not affect average protein signal from patterns

An example of pattern uniformity

Higher laser power and longer duration may improve signal uniformity

Shorter exposure duration results in narrower lines

An example of acquiring a line width profile

Proof of concept: Cells can grow on patterns

White arrow is pointing to the known location of a GFP (+) cell

IU

Peanut Lectin | TEM Carbon Grids

- With some handling practice, the grids (12 nm carbon on Au grid) can withstand all treatment steps
- Imaging the grids presents the greatest challenge
- For future users:
 - Adjust protein incubation time
 - Consider protein pH & salinity

- Try first on glass coated in carbon
- Use critical point dryer

ELP-RGD | Glass

Objectives

- Integration of new protein Engineered , recombinant, matrix-mimetic proteins that allow for additional tunability
- Feasibility Used standard parameters (100% Power, 60sec exposure), n=3

12

What a novice can expect in the first two months of using Alvéole PRIMO:

- "Masks" can be made with ImageJ (open source software, popular in biology)
 - We recommend a minimum feature spacing of 15 pixels (~4.2 um)
- Glass must be very clean and particle free
- Plasma treating the glass improves the quality of patterning
- Maintaining PEG hydration throughout handling is critical
- Consideration must be given to protein solution
 - o pH
 - salt concentration
 - Incubation time and temperature
- 100% power, 60 second duration is a good starting point, but individual users may want to optimize these parameters to improve
 - Uniformity
 - Resolution
- PRIMO is easier to learn and has fewer barrier to entries that lift off or microcontact printing
 - o For large scale operations, Heidelberg lift-off (not direct writing) may be quicker
- Future users may want to try diluting the PLPP and increasing exposure time as an approach to improving minimum feature size

Thank you mentors!

PI: Professor Beth Pruitt | Bioengineering | Molecular & Cellular Physiology

A new approach to µ-patterning protein: Alvéole PRIMO

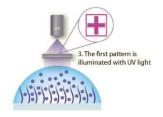
PRIMO components

UV light wavelength 375nm DMD-based projection system

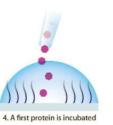
PRIMO features

Gradients (256 gray scales)
Multi-protein
1.2 um resolution
Alignment
Compatible with cells

Substrate Preparation


 Coat surface with an antifouling PEG layer

Clean Substrate Plasma Incubation of PEG



Thorough Rinsing PI PP

UV light + PLPP = Locally cleaves PEG

UV power UV exposure time

Incubation of Protein

Image with microscope

