Si and Glass Flip Chip Bonding with Solder Paste and Laser Cut Tape Stencils

KAREN DOWLING AND MIMI YANG MENTORS: J PROVINE, ASTRID TOMADA SNF STAFF: USHA RAGHURAM 12/07/16

Motivation / Goals

- Evaluate Finetech flip chip bonding capabilities
- Develop a process for solder paste bonding
- Electrically quantify solder joint resistance

Variables in the Process

Si Chip

- Stencil Align Squeegie solder paste Remove Stencil Flip Chip and Reflow **New Process**
- Choosing a cheap and lead-free paste (Tin/Silver/Copper Solder (SAC 305))
- Determining reflow temperature parameters

 Determine mechanisms for a new process on a new machine
Stanford University₃

Overview

- 1. Device Preparation
- 2. Stencils
- 3. Solder Reflow Curves
- 4. Electrical Results
- 5. Design Considerations
- 6. Future Project Suggestions

FINEPLACER® lambda

Stanford University₄

Devices Under Test

- Silicon die
- Glass Substrate
- Tin/Silver/Copper Solder
- 150 nm Nickel pads

- Daisy chains (2 sizes)
- Kelvin test structures
- Open face reflow structures

Device Preparation - the SNF Weeks

Transparency Masks

Glass Substrate

Si Chips

Stanford University₆

Stencil Design

Γ		0	
			. U
		a a	
α,	 0 00	 0 1	 3 0
	 a ===	 0 1	

Quick-Turn Rework Stencils

These laser cut stencils are typically used to manually print a single component on a printed circuit bo

- Maximum Size 2" x 2"
- · Available with or without flaps (Flaps facilitate handling)
- · Mainly used for PCB rework but can used for prototype PCB assembly of simple boards

Each mini squegee kit contains 1 squeegee blade positive grip handle and the following stainless steel squeegee blades:

SQBLADE040 10.2mm/0.4" width Qty 2

SQBLADE060 15.2mm/0.6* width Qty 2 SQBLADE080 20.3mm/0.8" width Qty 2

Lead Time: In stock and ready for shipment Price: \$35.00

Metal Stencil Guidelines for the Future

- Should be flush against surface
- Must be thin so surface tension of solder paste on substrate is greater than tension on stencil sidewalls
- \$80 is cheap for a stencil ... :((pay for material and laser time)
- Finetech has attachments for single die stencils, which are cheaper
- Type 3 solder paste particle size was too large (25-40 um) for our apertures (100 um). Need to obtain type 5 or 6 solder paste
- Design to include windows and large and easy alignment features

BUT We Figured out Tape Could Work!

Stencil(s) - Tape

Laser Cut

And We Characterized It

Label	A	В	С	D	E	F	G	н	I	J	К	L	М	N	0	Р	Q	R	S
Speed (%)	7	7	2	3	7	1	4	4	4	1	7	3	4	2	1	7	7	7	4
Power (%)	4	2	1	1	3	1	2	1	1	1	2	1	2	1	1	2	3	4	1
Таре	2 Yellow Dots						Blue Tape 1 Yellow Dot												

Epilog Fusion M2 Laser Laser Constants (50 W CO2 Laser): Frequency (50%), Hairline width, Vector Cut

day - with

Stanford University₁₀

But How Does One Apply Solder Paste?

Stanford University₁₂

Reflow Results - Laser Cut Tape on Blank Si

Good Melting Sample (F)

Before

After

Bad Melting Sample (H) *Before*

After

Metric: Laser cut apertures for consistent and repeatable reflow Stanford University13

Image from Keyence Demo Tool on Dec 2

Common Failure Modes of Flip Chip Bonding

Click me! We're all videos!

- Die misalignment due to z height of solder beads
- Die shifting during reflow
- Broken traces from high temperatures and long plateaus

Die Number

Stanford University₁₆

Results

Four Point Probe Measurements -Solder Joint Resistance $R_{4pp} = 2 \text{ Solder} + Tr_{Silicon}$ Via solder Si trace Via solder $R = 2 \text{ Tr}_{Glass} + 2 \text{ Solder} + 2\text{Tr}_{Silicon}$

Glass trace

Glass trace

Average Contact Resistance of Good Solder Joint: 2-3 Ohm, but variation in fabrication and measurements Stanford University₁₈

Lessons from Solder reflow Experiments - SAC 305

1)Flux Temp and hold time	200 C, 60 seconds					
2)Reflow Temp and hold time	250C, 15-30 seconds					
3) temperature ramps	3 degC/sec					
Force	0 N, alignment issues may happen					
Bond Pad Sizes	all worked (100 to 300 um)					
Heating side	Heat from bottom, Chip head too small					

Future Experimental Design Considerations

- Characterize solder paste temperature profile with open face reflow experiments
- Include space on edge of tape stencil for glass weights
- Design to include windows and large and easy alignment features
- Test flip chip alignment with clear substrate before permanent bonding
- Use thick metal pads (>500 nm) to prevent trace breakage
- Maintain oxide top layer to prevent excessive capillary movement during reflow
- Use base plate for heating instead of head
- Place alignment mark at center of finetech camera viewer

Stanford University₂₀

Future Suggested Projects

- Solder voids with Xray Microscopy
- Bond strength via Instron pull tests
- Apply to real devices!
 - > EE 410 transistors anyone?
- Shorting density of pads
- Alloys High and Low Temp Solder
- Uniformity of Bump Arrays across die
- Use spheres directly
 - > pactech.com

Instron in SMF

Image credit: Pactech.com

Acknowledgements

- Mentors: Usha Raghuram, J Provine, Astrid Tomada
- Prof. Howe, Mary Tang, Caitlin Chapin, Michelle Rincon
- Industry Mentors from Class!
- Finetech: Leigh Jackson
- SNSF: Shiva Bhaskaran, Keyence: David Hayes

