Optimization of Isotropic Plasma Etch in PT-DSE for GOPHER Process

EE 412 Final Presentation

Andrew Ceballos Mentor: Usha Raghuram

Outline

- Motivation
- Background
- Methods
- Results
- Conclusion

Introduction to GOPHER process

GOPHER:

- Generation Of PHotonic Elements by RIE
 - $\hfill\square$ anisotropic etch \rightarrow conformal deposition \rightarrow clear
 - bottom \rightarrow isotropic etch \rightarrow clear mask
- fabrication of photonic crystal membranes
 from single-crystal silicon
 - investigate alternative to standard Drytek2

GOPHER Process Flow I

1. oxidation and mask etch

2. anisotropic silicon etch

3. PR strip and conformal oxide

4. anisotropic oxide etch

GOPHER Process Flow II

5. isotropic Si etch

6. oxide strip

Hadzialic et al. (2010)

PT-DSE Introduction

fast gas switching, high
 ICP power and gas flow
 capabilities

very capable DRIE tool

Time Division Multiplex Etch Process

A Silicon wafer with patterned mask

B First etching cycle

C Passivation cycle

D Second etching cycle

Experimental Process Flow

- thermal oxidation
- litho asml
- oxide etch amtetcher
- strip resist/polymer gasonics
- measure mask film thickness nanospec
- isotropic etches
- FIB measurements an final mask thickness

Test Structure I

Test Structure II

🔊 unit_cell	2 Accel	eratorMa	skCM_v1.	tdb																_ 🗆 X
											Ш			.0	٥					
											0			Ъ	0	î	<u>51 + 15</u>	1		
	•	•	.•	٠	٠	2•	•	•	•	•	"•	٠	•	 •	•		•		•	
	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	· • •	•	•	· · ·	• •	• •				

Experimental Plan I

Baseline recipe based on EtB from DSE FAT

- only other steps: GS, LT, PWD no cycling
- electrode bias reduced
- other parameters selected based on experience with

DRIE process optimization

Experimental Plan II

Table1. Summary of process trends.

Trends for Controlling	Etch	Profile	Selectivity	Grass	Breakdown	Sidewall
process results	rate	(↑ negative)				Roughness
		(↓ positive)				
Etch gas increase	$\uparrow\uparrow$	$\uparrow\uparrow$	\uparrow	\leftarrow	\uparrow	\uparrow
Dep gas increase	$\downarrow \leftrightarrow$	\leftrightarrow	<u>↑</u>	\uparrow	$\downarrow \leftrightarrow$	\rightarrow
Etch:Dep time ratio	\rightarrow	\uparrow	$\uparrow \leftrightarrow$	\leftarrow	$\uparrow \leftrightarrow$	\uparrow
increase						
Pressure increase	$\uparrow\uparrow$	\uparrow	\uparrow	$\downarrow \leftrightarrow$	\uparrow	\uparrow
Dep Coil Power increase	$\downarrow \leftrightarrow$	$\downarrow \leftrightarrow$	$\uparrow \leftrightarrow$	÷	$\downarrow \leftrightarrow$	\rightarrow
Etch Coil Power increase	\rightarrow	\uparrow	\uparrow	\leftarrow	\uparrow	\uparrow
Platen Power increase	$\uparrow \leftrightarrow$	$\uparrow \leftrightarrow$	\rightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
EM1 value (e) increase	$\downarrow \leftrightarrow$	$\downarrow \leftrightarrow$	\uparrow	$\uparrow \leftrightarrow$	$\downarrow \leftrightarrow$	\leftrightarrow
EM1 delay (e) increase	$\uparrow \leftrightarrow$	$\uparrow \leftrightarrow$	\rightarrow	$\downarrow \leftrightarrow$	$\uparrow \leftrightarrow$	\leftrightarrow

E=etch

 $\leftrightarrow \text{ no effect or negligible effect}$

↑ increase

↓ decrease

Experimental Plan III

- 2^3 full factorial DOE: ~9 wafers
 - process variables
 - electrode bias (30-50 V)
 - □ pressure (15-25 mTorr)
 - ❑ electrode temperature (5-25 °C)
 - measurements via FIB, optical film measure
 - vertical (d) and lateral (b) etch rates
 - □ anisotropy (calculated as $A_F = 1 b/d$)
 - mask selectivity TBD

Experimental Plan IV

	Pattern	Electrode Bias (V)	(degC)	Pressure (mT)
1	-+-	30	25	15
2	-++	30	25	25
3	+-+	50	5	25
4	000	40	15	20
5	++-	50	25	15
6	+	30	5	25
7	+++	50	25	25
8	+	50	5	15
9		30	5	15

First Etch Example I

First Etch Example II

First Etch Example III

First Etch Example IV

Screen Etch - electrode T (DB235)

Screen Etch - pressure (DB235)

Screen Etch - pressure (Helios)

Least Squares Model - All Response

Least Squares Model - All Response

Least Squares Fit

⊿ Effect Summary

Source	LogWorth	PValue
Temperature (degC)(5,25)	1.611	0.02448
Electrode Bias (V)(30,50)	1.359	0.04376
Electrode Bias (V)*Pressure (mT)	1.149	0.07095
Pressure (mT)(15,25)	1.141	0.07235 ^
Temperature (degC)*Pressure (mT)	0.793	0.16090
Electrode Bias (V)*Temperature (degC)	0.332	0.46610

Least Squares Model - Vertical

A Constant

sorted Farameter Estimates							
Term	Estimate	Std Error	t Ratio		Prob> t		
Electrode Bias (V) (30,50)	146.875	31.77572	4.62		0.0438*		
Temperature (degC)(5,25)	139.875	31.77572	4.40		0.0479*		
Pressure (mT)(15,25)	111.625	31.77572	3.51		0.0723		
Electrode Bias (V)*Pressure (mT)	108.875	31.77572	3.43		0.0756		
Temperature (degC)*Pressure (mT)	-41.625	31.77572	-1.31		0.3205		
Electrode Bias (V)*Temperature (degC)	-28.375	31.77572	-0.89		0.4661		

Least Squares Model - Lateral

Sorted Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Temperature (degC)(5,25)	87	13.86705	6.27	0.0245*
Electrode Bias (V)(30,50)	61.5	13.86705	4.43	0.0473*
Electrode Bias (V)*Pressure (mT)	49.25	13.86705	3.55	0.0709
Pressure (mT)(15,25)	38.5	13.86705	2.78	0.1089
Temperature (degC)*Pressure (mT)	-30.25	13.86705	-2.18	0.1609
Electrode Bias (V)*Temperature (degC)	-7.25	13.86705	-0.52	0.6532

Next Steps

design new mask with custom structures
 rerun similar full factorial DOE utilizing an extended parameter space
 hopefully, Helios electron beam imaging issues will be addressed in the near future

Conclusion

- Sought to characterize a new option for isotropic plasma etching of silicon
 Etch profiles strongly affected by temperature, significant effect of bias
 - However, more work necessary to achieve desired etch profile \rightarrow better test structures!

Acknowledgements - Thank You!

- Usha and Elmer for advice, tool upkeep
- Prof. Howe, Mary, other mentors, and fellow
 - classmates for additional tips and guidance

References

- Sanja Hadzialic, S. Kim, A. S. Sudbø, and O. Solgaard, "Two-Dimensional Photonic Crystals Fabricated in Monolithic Single-Crystal Silicon," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 2, JAN 15, 2010
- Jeong, Jae-Woong, "High Aspect Ratio Si Etching in STS2," EE412 Fall '10 Final Reports, snf.stanford.edu/SNF/processes/ee412/fall-10/finalreports /EE412_STS2-HAR_Final_Report.pdf/view
- Plummer J., "Etching Chapter 10," EE212 lecture notes
- SNF Wiki, snf.stanford.edu/SNF/equipment/dry-etching/plasmatherms/ plasmatherm-deep-silicon-etcher/eqipment-description-and-operatinginstructions-for-plasma-therm-deep-silicon-etcher-pt-dse