

Aligned SWCNT Growth in SNF using FirstNano CNT Furnace

Gregory Pitner Advisor: H.-S. Philip Wong EE412 Mentors: Michelle Rincon & Robert Chen

Gregory Pitner, Stanford University 12.3.2015 Department of Electrical Engineering

- Motivation and Goals
- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

Motivation and Goals

- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

Applications for aligned single-walled CNTs:

- Platform for <u>Transistors</u> and <u>Systems</u> with CNT¹
- CNT VLSI has 10x EDP benefit at sub-7nm tech. nodes ²
- Enables Monolithic 3D & heterogeneous integration^{3,4}
- Bio-Sensors and biological interfaces ⁵

Aligned CNTs the materials foundation for these applications

- 1) M. Shulaker, et. al. Nature 2013
- 2) G. Tulevski, et. al. ACS Nano 2014
- 3) H. Wei, et. al. IEDM 2013

4) M. Shulaker, et. al. IEDM 2014 5) J. Geng, et. al., Nature 2014

12.03.2015

Project Goals

- **1.** Startup the FirstNano CNT Growth tool in SNF
 - Installed in February 2015

2. Create recipes for aligned CNT Growth > 5 CNT/µm

- Methane Carbon Source
- Ethanol Carbon Source
- **3.** Explore process window for CNT Growth
- 4. Demonstrate consistency & wafer scale uniformity
- **5.** Characterize the CNTs to confirm properties

- Motivation and Goals
- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

Carbon Nanotube Aligned CVD Growth – Cartoon #1

• Deposit a thin film of metal or nanoparticles

Scale Bar = 100nm

Carbon Nanotube Aligned CVD Growth – Cartoon #2

- Decompose Carbon precursor at 800-1000°C
 - CH₄, C₂H₆O, C₃H₈O, etc... limitless # of Carbon sources

ST Quartz: [100] direction on (0111) surface or Sapphire

CNT Aligned CVD Growth Mechanism – Exp. Results

- Decompose Carbon precursor at 800-1000°C
 - CH₄, C₂H₆O, C₃H₈O, etc... limitless # of Carbon sources

ß

CNT CVD Growth Cycle

- Motivation and Goals
- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

FirstNano Methane Growth – Failed to achieve goals

Growth Series: Each growth had reference piece with 3Å Fe

Difference between Methane and Ethanol

Methane – The simplest saturated chain carbon molecule

Thermal Decomposition Pathway

C.-J. Chen, M. H. Back, R. A. Back, Canadian Journal of Chemistry, 1975, 53(23): 3580-3590

Ethanol – The 2nd simplest alcohol, after methanol.

Acetylene – C₂ is the closest precursor to a building block for CNT Assembly

 $C_2H_2 = H - C \equiv C - H$

- G. Zhong, et. al., J. Phys. Chem. C, 113, 17321-17325
- G. Eres, et. al., J. Phys. Chem. C, 2009, 113, 15484-15481
- H. Kimura, et. al., Scientific Reports, 2013, Vol.3 p.3334

Initial guess at recipe: 864°C, 760 Torr, 7.8 sccm EtOH

Approach: Since tubes are short – try to grow longer! **/

**All lengths in µm

Tube Length vs. Growth Time	5 Min	15 Min	30 Min	60 Min
Sample 1: 3.2Å Fe	26.2	32.92	19	55
Sample 2: 3.2Å Fe	8.4	24.3	6.47	35.7
Sample 3: 3.2Å Fe	20	14.7	7.05	26.3
Sample 4: 3.2Å Fe	13.9	23	11.1	35.7

Observation: No trend of tube length with time, therefore growth stops early. Challenge: Understand why growth stops early.

- Motivation and Goals
- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

Modeling EtOH vapor flow

 $-F_{in} \rightarrow$ Argon: 0 – 400 sccm

- Antoine Coefficients for Ethanol
- Flow Equation

Range of Variables

$$F_{out} = F_{in} * \frac{P_{EtOH}}{P_{Bubbler} - P_{EtOH}}$$

Source: http://ddbonline.ddbst.de/AntoineCalculation/AntoineCalculationCGI.exe

 $-P_{EtOH}$ → Ethanol Partial Pressure: 5.5 – 133 Torr at 40°C.

− P_{Bubbler} → Bubbler Pressure: Chamber Pressure – 1000 Torr

Can translate from process controls to process conditions inside the furnace.

DOE – Ethanol Flow vs. Temperature

Sample B11 W2: 3.2Å Fe Liftoff < <pre><pre><pre><pre><pre><pre><pre><pre< th=""></pre<></pre></pre></pre></pre></pre></pre></pre>						
Growth Temp / Ethanol Flow:	7.4 sccm	14.8 sccm	22.2 sccm	29.7 sccm	61.0 sccm	
800C			0.6	0		
850C	Sh/ort	Short	1.5	6.6		
900C	3.5	8.8	8.8	6.4	6.8	
Bubbler Temp	23 C	23 C	23 C	23 C	40 C	
Ar Flow Through Bubbler	100 sccm	200 sccm	300 sccm	400 sccm	300 sccm	
Bubbler Pressure	850 Torr	850 Torr	850 Torr	850 Torr	850 Torr	

*All density values from SEM averaged over at least 12 um

- Too-low ethanol flow or temperature will starve growth
 - Mechanism 1: Not enough carbon to sustain CNT growth
 - Both mass flow and source thermal decomposition play a role
 - Mechanism 2: Temperature affects reactions at the catalyst.
 - Which is rate limiting: EtOH mass flow or catalyst reaction?

Bottom line: A growth window exists, starting density >5 CNT/um

Explains short tubes, and occasional low-density results in early runs.

Further efforts to improve CNT Single-growth Density

	CNTs per micron				
Growth Time	Sample 1	Sample 2	Sample 3	Sample 4	
10 Minutes	10.5	8.3	8.1	8.4	
30 Minutes	9.4	6.1	6.3	6.2	
60 Minutes	10.7	10.9	8.4	8.3	

- 10 minutes is just as dense as 60 minutes
 Must increase EtOH flow
- Tried 22, 33, and 61 sccm EtOH, w/ no trend

Best results so far: >10 CNT/um, seen 6 times.

Further efforts to improve CNT growth density

Catalyst Thickness and Deposition

- We looked at this some, but did not include a large enough range to draw a trend.
- Past experience says this is very key sample parameter.
- Systematic treatment necessary, can yield >15 CNT/um.

- Motivation and Goals
- Introduction to CNT Growth
- Previous work and Initial Conditions
- Ethanol Growth Development
- Demonstrations of consistency and usefulness
- Summary

Consistency Demonstration – very important!

Samples: 4 wafers, 3.2Å Fe prepared by liftoff

Growth Condition: 900°C, 22.2 sccm EtOH, 760 Torr

Bottom line: We observe consistent 5-10 CNT/µm. EE412 Goal Met!

Run 1 \rightarrow 10 did not clean tube between runs. Run 10 was the 22nd growth on tube. Run 11: 1 week later with re-filled source, O2 cleaned tube, was \approx 30th growth on tube.

100 mm Wafer **CNT** Growth **Uniformity:**

CNT Characterization

Diameter Distribution

Back-gate FET Structure

Electrical Characterization 1um Wide Device

5um Wide Device

Summary of Project Goals

1. Startup the FirstNano CNT Growth tool in SNF

- Installed in February 2015

2. Create recipes for aligned CNT Growth > 5 CNT/ μ m

- X Methane Carbon Source ≈1 CNT/um.
- Ethanol Carbon Source 6-10 CNT/um
- **3.** Explore process window for CNT Growth
- **4.** Demonstrate consistency & wafer scale uniformity
- **5.** Characterize the CNTs to confirm properties

Recipes & training manual are available to SNF users *Today*!