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What is ALD?  aka How does it work? 

• First let’s look atomistically.   
– A rose by any other name… 

• Then we’ll look at what that means in ways we 
can measure. 
– Microscopically?  Nanoscopically?  
Angstroscopically? 

• Then briefly back at the atomic level to see 
behind the curtain. 



In air H2O vapor is adsorbed on most surfaces, forming a hydroxyl group.  
With silicon this forms: Si-O-H (s) 

After placing the substrate in the reactor, Trimethyl Aluminum (TMA) is pulsed into 
the reaction chamber. 
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Al(CH3)3 (g) + : Si-O-H (s)         :Si-O-Al(CH3)2 (s)  + CH4  

Trimethylaluminum (TMA) reacts with the adsorbed hydroxyl groups, 
producing methane as the reaction product 
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Trimethyl Aluminum (TMA) reacts with the adsorbed hydroxyl groups, 
until the surface is passivated. TMA does not react with itself, terminating the 

reaction to one layer. This causes the perfect uniformity of ALD. 
The excess TMA is pumped away with the methane reaction product. 
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After the TMA and methane reaction product is pumped away, 
water vapor (H2O) is pulsed into the reaction chamber. 
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  2 H2O (g) + :Si-O-Al(CH3)2 (s)          :Si-O-Al(OH)2 (s)  + 2 CH4  
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H2O reacts with the dangling methyl groups on the new surface forming aluminum-
oxygen (Al-O) bridges and hydroxyl surface groups, waiting for a new TMA pulse. 

Again metane is the reaction product.  
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The reaction product methane is pumped away. Excess H2O vapor does not react with 
the hydroxyl surface groups, again causing perfect passivation to one atomic layer. 
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One TMA and one H2O vapor pulse form one cycle. Here three cycles are shown, with 
approximately 1 Angstrom per cycle. Each cycle including pulsing and pumping takes e.g. 3 sec. 
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Al(CH3)3 (g) + :Al-O-H (s)         :Al-O-Al(CH3)2 (s)  + CH4  

  2 H2O (g) + :O-Al(CH3)2 (s)          :Al-O-Al(OH)2 (s)  + 2 CH4  

Two reaction steps in each cycle: 
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Measurement Technique: Ellipsometry 

• Measure change in 
reflected polarization 

• Fast and extremely 
accurate (<1Å) if material 
model is known 

• Stacks of varying films 
and absorptive films can 
cause issues 

• Average over a large area 



Microscopically (Nanoscopically?) 
What makes a deposition ALD? 

• Step One:  Linear growth rate 
 
 
 
 
 
 
 

• Is anything wrong here? 
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• Step Two:  Self-limiting deposition/cycle 

Microscopically (Nanoscopically?) 
What makes a deposition ALD? 

Saturation Curve at 250°C 
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ALD “Window” 
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Each ALD process has an ideal process “window” in which growth is saturated at a 
monolayer of film.    



Outside  the ALD Window 
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Outside the ALD Window 

• If not all of the 
reactants are removed 
from the chamber 
during the purge… 

• An easy indication of 
this is a loss in film 
uniformity. 

 



ZrO2 Uniformity Optimization 
Normal Chamber Thickness 

Map 

 

Average Thickness vs. Pulse Time 
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ZrO2 Uniformity Optimization 
Under-Dosed 

Chamber Thickness Map 

 

Average Thickness vs. Pulse Time 
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ZrO2 Uniformity Optimization 
Chemical Vapor Deposition 

(CVD) Chamber Thickness Map 

Average Thickness vs. Purge 

Time 
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HfO2 Uniformity Optimization 

Normal ALD Process Non-Uniformity vs. Pulse Time 
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Film 

Purge time is too long 

Precursor-saturated surface 
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Desorption! Average Thickness vs. Purge Time 
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What is going on atomistically? 

• Compositional analysis 
– Very complete material map 
– Accuracy .1-10% depending 

on material 
• Weighted average over a 

depth of ~10nm 
• Lateral spot size is typically 

>10µm (system dependent) 
 
 

• Secondary ions emitted from 
the surface (and sub-surface) 

• Extremely accurate trace 
contamination 

• Depth profiling 
• Significant damage to surface 
• Interface mixing 

 



What is going on atomistically? 
We need a technique to look 1 atom deep. 



LEIS and The Hypocratic Oath 



LEIS on an ALD film of ZrO2 



LEIS on an ALD film of ZrO2 

The little secret of ALD…if you know this, you know more 
than 90% of the people I’ve talked to about ALD. 



Platinum Nucleation 
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Plasma Enabled (PE)ALD 

ͻ Remote Plasma as a reactant 
– Widens ALD window for materials by decreasing 

activation energy 
– Avoids precursor decomposition or damaging 

substrates with limited thermal budget 
– Remote ICP source prevents substrate damage from 

ions 
– Faster deposition cycle times 
– Fewer contaminates in films 
– Smaller nucleation delay 

 
ͻ Film Examples 

– Low temperature oxides 
– Metal nitrides 
– Metallic films 

 
• High-Aspect Ratio Structures 

– Radical recombination prevents greater than ~20:1 

Fiji PE-ALD chamber 



Benefits of Plasma 

• Precursor temp 90°C 
 

• Nucleation is eliminated when 
using O2 plasma as reactant 
 

• Constant growth rate per cycle 
even at low process temp 
 
 

 

Decreased nucleation for metallic films 
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Pt Nucleation 
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Nanolaminate Formation / Doping 

 

� “Doping” in ALD 
 
� Doping is carried out by substituting a pulse of 

precursor M1 with dopant precursor M2 
 

� This allows exploration of a wide concentration 
window without having to prepare new targets for 
each concentration (as in sputtered depositions) 
 

� Grated films with uniform properties possible 
 

� Annealing films to “activate” dopants is not required  
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Summary 
• The Canonical view of ALD is valuable for 

understanding, but it does not provide full 
understanding 

• A more complete understanding is useful 
– Selective deposition 
– Surface preparation 
– Troubleshooting 

• For analysis there is no magic bullet 
– Best to heavily armed 
– The right analysis for your interest 



Questions? 
 

On to Process Development 
 



High quality recipe example:  MgO 



High quality recipe example:  MgO 



High quality recipe example:  MgO 



Guard against “unstable” precursors 



Sufficient dose is needed 



System Purge 

• Reactant X must be fully cleared before 
reactant Y is introduced to the system 
– Otherwise CVD-like growth 

• Purge time depends on temperature (and 
chemical) 



Exposure Mode 
• For high aspect ratios or to improve deposition 

uniformity/consistency 
• Close stop valve before pulse and allow 

saturation time before purge 



Boost for Low Volatility Precursors 



Summary 
• ALD can be an extremely stable, repeatable, 

controllable process 
• However, good recipe characterization and 

precursor selection is essential 
• Resources 

– Academic literature 
– Cambridge Nanotech (many well established recipes) 
– ALD work at stanford:  

snf.stanford.edu/SNF/equipment/chemical-vapor-
deposition/ald/ 

– jprovine@stanford.edu; mmrincon@stanford.edu  

https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
https://snf.stanford.edu/SNF/equipment/chemical-vapor-deposition/ald/
mailto:jprovine@stanford.edu
mailto:mmrincon@stanford.edu


Finally:  Some Things  
Learned During Roadshow 

• Equipment 
– University of Maryland:  

Beneq 
– UC Berkeley:  Fiji and 

Picosun 
– UT Austin:  Savannah and 

Fiji (w/ turbo pump) 
– Arizona State:  Savannah 
– Cornell:  Oxford 
– Washington (Seattle):  

Oxford 
– GA Tech:  Fiji 
– Harvard:  Fiji and Savannah 
– Utah:  Fiji 

• Processes 
– Maryland:  thermal 

vanadium oxide 
– UC Berkeley:  thermal 

Ru 
– UT Austin:  thermal 

BeO2 
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