Vertical quantum confinement structures

Anup Dadlani, Karen Kim, Martin Winterkorn (Prinz Group, ME) J Provine (Mentor)

Fabrication Goal

- Fabricate vertical "blades" of InSb or InAs with dimensions:
 - <50 nm wide</p>
 - >10:1 height-to-width aspect ratio
 - several um long

Top view

Challenges

(1) InAs MOCVD growth

Regular deposition at 400C

dielectric

XRD characterization of MOCVD InAs

(2) ASML double exposure

- Why try this in the first place?
 - Higher throughput & lower cost than e-beam
 - Well-characterized resist properties for etching
- 2 main options:
 - a) Hard mask, regular exposure twice with shift
 - b) One resist layer, half-exposed twice with shift

Double Exposure Testing Methodology

Parameters

- First Exposure Dose 1
- Second Exposure Dose –
- Offset Matrix exp. each time
- Linewidth optimized @ 500 nm
- Shift <mark>2)</mark>
- Surface Reflectivity

Single Resist - Coarse

Exp Shift	200 nm	250 nm	300 nm	350 nm	400 nm	450 nm	500 nm
2x 40 mJ							
2x 60 mJ					202 / 282 (ns)	132 / 237 (vns)	135 / 167 (vns)
2x 80 mJ				158	101	NR	
2x 100 mJ			116 / 159 (ns)	125	NR		
2x 120 mJ			121	NR			
2x 140 mJ		109	NR				
2x 160 mJ		NR					

Single Resist - Fine

Exp Shift	340 nm	360 nm	380 nm	400 nm	420 nm	440 nm	460 nm
2x 40 mJ							
2x 50 mJ							
2x 60 mJ							145 / 289 (ns)
2x 70 mJ				141 / 202 (ns)	135 / 184 (ns)	118 / 150 (ns)	NR
2x 80 mJ					115	98	NR
2x 90 mJ				110	115 (BR)	NR	
2x 100 mJ			BR	BR	NR		

spot 3.0 9268 x 5.1 mm 0° 5.1 mm 0° 102	spot mag Π WD tilt 5µm 6109x 5.1 mm 0° SNSF 3.0 9268 x 5.1 mm 0° SNSF Nova SEM 61099x 5.1 mm 0° SNSF
<u>mag ₩ WD</u> <u>tilt</u> <u>— 5 µm</u> <u>mag № WD</u> <u>tilt</u> 9 268 x <u>5.1 mm</u> <u>0°</u> <u>SNSF Nova SEM</u> <u>nag № 5.1 mm</u> <u>0°</u>	mag □ WD tilt 5µm 6109 × 5.1 mm 0° SNSF
WD tilt 5 µm mag № VD tilt 5.1 mm 0° SNSF Nova SEM 61 009 x 5.1 mm 0°	WD tilt 5 µm mag WD tilt mag WD tilt mag ND tilt mag
	tit 5 μm mag μ WD tit w 0° SNSF Nova SEM 61009 x 5.1 mm 0° SNSF
102 102	<u>торина и мара и мара и tit oʻ sus</u>
mag R VD tilt 100% 5.1 mm 0.%	mag WD tilt
VD tilt 5.1 mm 0°	ND tilt S.1 0°
02.¢	D2.4 mm tilt 0°

Hard Mask

ccp-dep & p5000etch vs. LTO & PT-OX

Hard Mask Variability testing

within each line

lines per shot

shots per parameter set

parameter sets per wafer

wafers

total

Hard Mask Variability testing

within each line	882 measurements
lines per shot	4 measurements
shots per parameter set	4 measurements
parameter sets per wafer	4 measurements
wafers	4 measurements
total	256 SEMs / 225,792 measurements

Hard Mask Variability testing

within each line	882 measurements
lines per shot	4 measurements
shots per parameter set	4 measurements
parameter sets per wafer	4 measurements
wafers	4 measurements
total	256 SEMs / 225,792 measurements

Within each line – RMS roughness	3.0 nm
Within each shot – standard deviation of line width (pre-averaged for each line)	3.8 nm
Within same settings – standard deviation of line width (pre-averaged for each shot)	2.7 nm
Between wafers – standard deviation of line width (pre-averaged for whole wafer)	16 nm

Intra- and inter-shot variability

Electron Beam Lithography

- Electron beam lithography uses a finely focused beam of electrons to define patterns onto a polymercoated wafer.
- No physical mask .
- Can work with small pieces.
- Can define beam diameter down to 2 nm.

40 nm gratings with 8 nm lines by Rich Tiberio

Mask making

- Make sure it is a GDSII file, BEAMER software is not forgiving!
- If you have features of differing lengths, make sure they are on different layers

 If you typically make a pattern and use negative resist and want to make the same thing with a positive resist, you can use the same mask.

Resist selection

Resist	Tone	Dilution	Pre-Bake Temperature	Bake Time	Developer
Zep 520 A	+	1:2 Anisole	70 C	30 s	MIBK:IPA (1:1)
PMMA	+	-	180 C	90 s	MIBK:IPA (1:3)
*HSQ	-	-	80 C	60 s	MF 319
MaN-2405	-	1:2 Anisole	90 C	45 s	MF 319

All resist were spun with recipe 8 (5s 505 rpm, 40 s 4500 rpm) in SNC on spin coater

* HSQ is very expensive (\$1200/250mL) and not available in SNC

After spinning resist

• Filmetrics to get thickness measurement, spectral reflection based method

Determining dosage

- D = (I*t)/A, where D = dose (μC/cm²) I = current (A) t = time (sec) A = exposure area (cm²)
- In the Jeol JBX-6300FS, Rich uses the following

 $4000*I(nA)/(step size (nm))^2 = D (\mu C/cm^2)$

- The smaller the feature size, the higher the base dose. Choose aperture and current appropriately.
- Depending on resist, the base dose needs to be changed.

In our case - Zep 520A, PMMA, and MaN-2405 required base does of 400 μ C/cm² but HSQ required 1000 μ C/cm².

Limit MaN-2405 resist 10 x 300 nm

Nearly 4:1 aspect ratio

Better dosage and adhesion after using SUPASS

MaN-2405

Needs higher dose, but overall better when comparing to previous figures on left

InSb Reactive Ion Etching

• Two reported process for InSb etching

Process	BCl ₃ , Cl ₂ based	CH ₄ , H ₂ based		
Volatile Product	InCl _x (>240°C)	SbH ₃		
Side wall profile	Sloped	Sloped, Barreled		
Roughness (RMS)	0.25 – 33 (nm)	10 – 40 (nm)		
SEM Images	<u>5μm</u> 500 nm	<u>5 nm</u> <u>3 μm</u>		
Problem	InCl _x can cause electrode to short			

Journal of Vacuum Science & Technology A 27, 681 (2009) Microelectronic Engineering 98, 222 (2012) Applied Surface Science 143, 183 (1999)

JMP Setup

- Etch Conditions
 - Photoresist (SPR955-.7) mask
 - Substrate kept at 20 °C
 - ICP power set to 600W
 - RF power set to 100W
 - Chamber pressure set to 20 mTorr
 - Variables
 - 1. CH_4 flowrate (15 45 sccm)
 - 2. H_2 flowrate (4 10 sccm)
 - 3. Ar flow (40 80 sccm)

Fig.1 Jump variable setting

JMP Results

• Samples were etched for 3 min

	Factor				Results			
Sample #	CH4 flow (sccm)	H2 flow (sccm)	Ar flow (sccm)	Roughness (nm)	Angle (deg)	InSb Etch rate (nm/min)	Selectivity	
1	+	+	+	18.4	60	57.6	1.56	
2	+	+	-	31.6	90	75	37.48	
3	+	-	+	23.4	90	76.3	2.16	
4	+	-	-	32.4	72	74.7	1.81	
5	-	+	+	27.6	74.3	57.6	0.99	
6	-	+	-	26.8	70.2	69.1	1.34	
7	-	-	+	20.2	72.2	62.2	0.97	
8	-	-	-	32	75.5	55.4	0.86	
9	0	0	0	27.1	90	55.7	1.02	

 CH_4 flowrate (15 – 45 sccm), H_2 flowrate (4 – 10 sccm), Ar flow (40 – 80 sccm)

Etching

• Based on the etch rate of InSb, selectivity can be estimated

Selectivity (Photoresist etch rate/ InSb etch rate)

 $InSb \ etch \ rate = 24.2 \ ln(Selectivity) + 59.3$

JMP Results

• No strong correlation was found between factors, roughness, angle, etch rate and selectivity

	Factor				Results				
Sample #	CH4 flow (sccm)	H2 flow (sccm)	Ar flow (sccm)	Roughness (nm)	Angle (deg)	InSb Etch rate (nm/min)	Selectivity		
1	+	+	+	18.4	60	57.6	1.56		
2	+	+	-	31.6	90	75	37.48		
3	+	-	+	23.4	90	76.3	2.16		
4	+	-	-	32.4	72	74.7	1.81		
5	-	+	+	27.6	74.3	57.6	0.99		
6	-	+	-	26.8	70.2	69.1	1.34		
7	-	-	+	20.2	72.2	62.2	0.97		
8	-	-	-	32	75.5	55.4	0.86		
9	0	0	0	27.1	90	55.7	1.02		

 CH_4 flowrate (15 – 45 sccm), H_2 flowrate (4 – 10 sccm), Ar flow (40 – 80 sccm)

Surface morphology v.s. Etch time

• Grass shows up

• Instead of being etched, nanowires grow

What is Happening?

• Why are we seeing nanowires?

Weidlein.J (2013) In Organoindium Compounds, Springer

What is Happening?

• XPS data for InSb surface after etching for 6 min

What is Happening?

- This explains....
 - 1. Why there are no visible relationship between JMP samples
 - Many factors are effecting the etch
 - 2. Why CH4/H2/Ar (+/-/+) flow give relatively smooth surface
 - Balance between chemical etching and physical etching
 - 3. Why higher ICP power doesn't yield higher InSb etch rate

Fig.2 Comparison between ICP power of 600W and 1000W

Future Work

- Steps to smooth InSb etching
 - 1. Heat the chuck temperature higher than 50°C (If possible)
 - 2. Increase the RF power if the side walls are sloped or barreled
 - 3. Balance the chemical etching and physical etching
 - 4. Find the optimum point for etching
- E-beam resist samples waiting to be measured for selectivity

Acknowledgements

- J
- Mahnaz, Usha, Rich
- Prof. Roger Howe, Prof. Fritz Prinz
- 412 class