3D Printing for Optics and Microfluidics

EE 412 Fall 2015 Saara Khan and Stephen Hamann Mentor: Robert Chen Instructor: Roger Howe

Contents

- Overview of 3D Printing and the Solidscape Studio
- Application 1: Custom Optics
- **Application 2: Microfluidics**
- Conclusion: Further applications and future work

3D Printing

- known as Additive Manufacturing
- lachining (Auto CNC) = Subtractive Manufacturing
- y different types of printers:
- xtrusion (Fused Deposition Modeling FDM)
- nk Jet (Multi Jet Modeling MJM)
- ight polymerization (Stereolithography SLA, Two-photon) 1elting/sintering
- erials include plastics, metals, ceramics, food. . .
- e trait of building up layer by layer

Advantages and Disadvantages

++

- Only skill required CAD software
- Usually inexpensive or cheaper than alternative
 - For one off productions
- Complex designs are possible that would be difficult otherwise

--

- Individual printers can have limited scope
 - Usually just one material choice
 - Time/resolution trade off
- Too slow for mass production
- Every printer has its own quirks

Jses for 3D Printing

- Applications and materials depends on the 3D printer
- Consumer: knick knacks, toys, decorations
- One-off prototypes
 - Cheap plastic model
 - Iterate over different parameters easily
- Unique structures difficult to manufacture traditionally

Will not be replacing mass production or masterful craftsmanship for a while

Resources for 3D Printing

- CAD Software:
 - Solidworks free at Terman Library
 - Autodesk free online
- On Campus
 - Room 36: several FDM, one projet (not for research)
 - TRI-Lab
 - SNF: Solidscape Studio
- **Off Campus**
 - Many services such as Protocafe

The Solidscape Studio

- Marketed toward custom jewelers
- Uses wax for model and support material
- Proprietary software takes .STL parts
- Specifications
 - 6.4 um minimum layer size
 - 5000x5000 DPI X-Y resolution
 - Up to ~800 nm RMS surface finish
 - 6"x6"x2" build area

Application 1: Optics

- Goal: Use unique abilities of 3D printing to make PDMS optical devices
- Initial problem: Printer is too rough
- Further Problems: PDMS does not cure on wax, layer resolution

Solution: Use smoothing process then coat in Parylene

Process Steps

- Print Mold with 6um surface finish
- **Use Smoothing Process**
 - Room temperature 10% IPA-H20 bath for 15 minutes
- **Coat with Parylene**
 - 10 g with a Silane Treatment
- Fill with PDMS and cure at 60°C for 2 hours.
- Extract Piece, salvage or toss master

Printing Device

- Open .STL file in 3ZWorks, append additional files, select parameters
- Create .3zs file, transfer to printer
- Start Job and Wait
- Use hot plate to release devices
- Dewax support material using 140°F mineral oil
- Let dry

Smoothing Processes

Untested: Vapor bath, chemical-mechanical planarization, sandpaper,

electroplating

- Flame and heat lamp treatments proved difficult to control
- Model material dissolves in IPA, use low concentration IPA bath

Control

Statistical Quantities		
Minimum:	-1.0859 μm	
Maximum:	1.8622 μm	
Median:	-0.1283 μm	
Ra: C	.4837 μm	
Rms:	0.5777 μm	
Rms (grain-wise): 0.5777 μm		
Skew:	0.6091	
Kurtosis:	-0.4652	
Surface area:	46.26672 μm^2	
Projected are	ea: 25.00000 μm^2	
Variation:	34.253 μm^2	
Entropy:	-13.114	
Inclination θ :	12.06 deg	
Inclination ϕ	-47.89 deg	

15 min 10% IPA Bath

Statistical Qu	antities	
Minimum:	60.95 nm	
Maximum:	64.20 nm	
Median:	62.42 nm	
Ra: C).90 nm	
Rms:	1.02 nm	
Rms (grain-wise): 1.02 nm		
Skew:	0.4438	
Kurtosis:	-0.7808	
Surface area:	0.00344 μm^2	
Projected are	ea: 0.00343 μm^2	
Variation:	200.61 nm^2	
Entropy:	-19.548	
Inclination θ :	3.20 deg	
Inclination ϕ	: 114.23 deg	

30 min L0% IPA Bath

Statistical Quantities		
Minimum:	-752.10 nm	
Maximum:	241.67 nm	
Median:	48.32 nm	
Ra:	145.98 nm	
Rms:	186.35 nm	
Rms (grain-wise): 186.35 nm		
Skew:	-1.202	
Kurtosis:	0.9853	
Surface area	: 26.41582 μm^2	
Projected ar	ea: 25.00000 μm^2	
Variation:	7.2406 μm^2	
Entropy:	-14.332	
Inclination θ	: 2.25 deg	
Inclination ϕ	: 43.52 deg	

Parylene Coating

Good barrier between PDMS and wax Thickness needs to be tested Silene Treatment: Four drops of A-174 Silane before pump down

-inished Devices

-inished Devices

-inished Devices

Conclusion

- Future work
 - Optics: refine smoothing process
 - Microfluidics: 3D designs and pushing printer capabilities

Further applications

- Reflective optics
- Inductors
- ???

