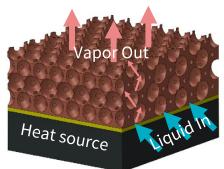
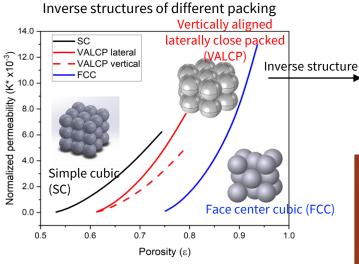

3D, porous, electroplated metallic structures using two-photon lithography templates



FALL QUARTER REPORT

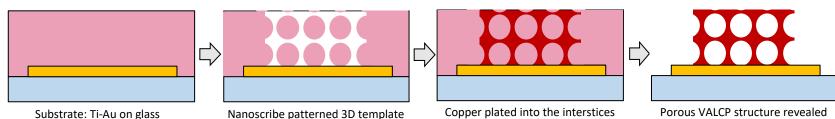
Qianying Wu and Alisha Piazza Mentors: Swaroop Kommera and Tony Ricco



Exploring new geometric configurations for extreme high performance microfluidic and thermal transport

Testing configuration:

- Lateral liquid supply by wicking
- Flow boiling with phase change
- Vertical vapor removal


With 2-photon lithography, we can make anisotropic templates that utilize both advantages of SC and FCC

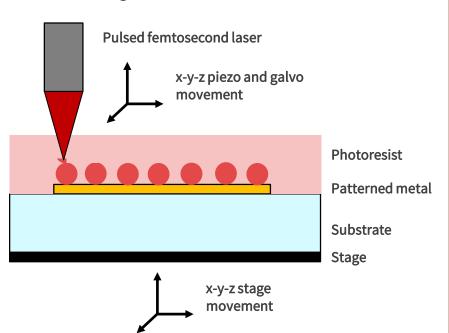
High capillary wicking pressure

(per layer of spheres)

Low vapor removal resistance

Fabrication overview of inverse VALCP structure

Spin coat resist SPR220-7


STANFORE OF THE STANFORE

Stanford University

Direct Laser Two-Photon Lithography

Working Principle

Non-contact, through air mode

Nanoscribe Photonics Professional GT

Location: SNF ExFab

Lateral Feature Size: 200nm Lateral Resolution: 500nm

Piezo Range: 300μm x 300 μm x 300 μm

Thick, positive photoresist on patterned metal substrates

Positive Photoresists

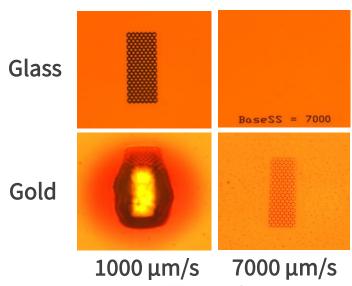
Pros	Cons	
 Better control of	Higher dose (slower)Not as well	
template dimensions Easier to dissolve	characterized	

AZ4620

Pros	Cons	
Previously used by Wendy GuSingle coat (17 um)	Inconsistent exposureExpiredCarcinogenic	

SPR 220-7

Pros	Cons	
 Thick resist (~29 μm) More common in SNF 	 Two plus coats required 	


Patterned Metal Substrates

Extending SNF capabilities

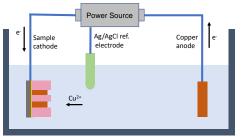
- Not ITO (conductive) or glass
- Alignment

Affects writing parameters

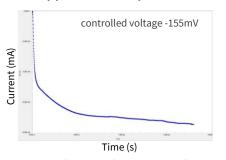
- Reflective
- Must write from top through air

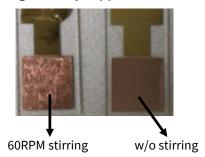
namileat Stanford University [4]

Parameter sets for different photoresists

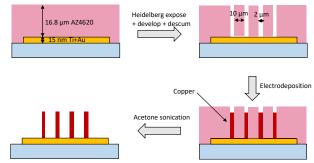

IP-dip	SPR220-7	AZ4620*
-	+	+
Drop cast	Double coat	Single coat
N/A	29 μm	17 μm
30%	100%	100%
20K	5K	4K
1	1.2	1.2
SU-8 dev + IPA	MF-26A	AZ400K:DI water = 1:3
20 + 5 min	2 min	5 min
	N/A 30% 20K 1 SU-8 dev + IPA	- + Drop cast Double coat N/A 29 μm 30% 100% 20K 5K 1 1.2 SU-8 dev + IPA MF-26A

Footprint = $100 \mu m \times 30 \mu m$; Footprint = $100 \mu m \times 30 \mu m$; Footprint = $30 \mu m \times 25 \mu m$; Pore size = $5 \mu m$ Pore size = $5 \mu m$

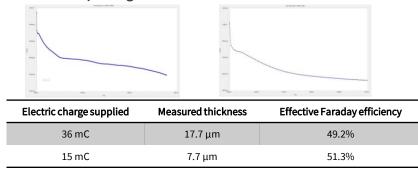

[5]


Template-assisted electrodeposition: 1D to 2D (to 3D soon)

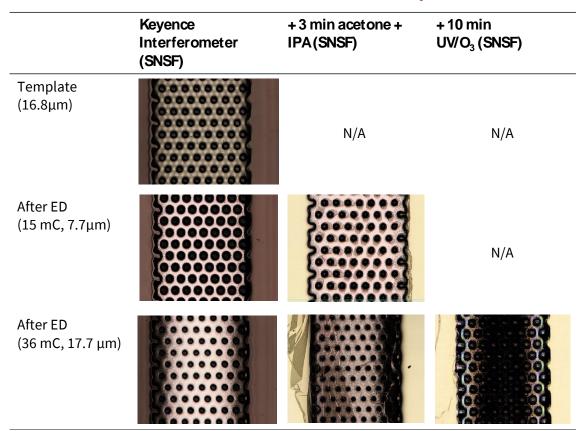
Three-electrode setup for copper electrodeposition



1D copper electrodeposition: no stirring for shiny copper finish



2D copper inverse pin fin structure with litho-generated template: to tune electroplating conditions



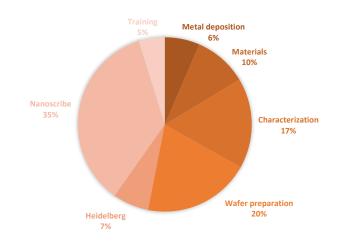
- AZ4620 exposed in Heidelberg (dose 1000; defocus -2)
- Descum in technics (1.5 min)
- Cleanly exposed seed layer is the key for successful plating
- Copper plating solution from Sigma-Aldrich (-155 mV)
- Acetone bath sonication for 10 min+ to remove AZ4620

- 1. Integrate i-t curve to determine electric charge supplied
- Estimate deposition thickness using Faraday efficiency

Characterization of electrodeposition and template removal

- Successful electrodeposition proved the exposure and descum parameters can expose Au seed layer
- Template removal condition is influenced by structure aspect ratio: PR inside 7.7 µm inverse pin fins can be removed with 3 min acetone + IPA, but not with 17.7µm structures
- For 36mC sample: copper has been over-plated and partially deposited on the pin fin template (pores become smaller)
- UV/O₃ would oxidize copper

Summary and Future Work


Fall Quarter Contributions to SNF community

- Extended the use of Nanoscribe to positive and thick resist
- Explored the influence of reflective substrate on Nanoscribe
- Combined electrodeposition with litho-generated templates

Winter Quarter Goals

- ☐ Finalize writing parameters for 220-7 resist
- Write large porous structures
- Physically characterize template
- Determine best method for producing clean gold-solution interface
- Identify optimal electroplating parameters
- Physically characterize electroplated structure
- Electrically characterize electroplated structure
- ☐ Fluidically characterize electroplated structure

Fall Quarter Spending: \$3305.97

